ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.11.2019

Просмотров: 2258

Скачиваний: 8

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Однако основная масса азота, содержащегося в населяющих нашу планету живых организмах, своим происхождением обязана деятельности микроорганизмов, способных ассимилировать молекулярный азот атмосферы, восстанавливая его до аммиака. Этот процесс называется биологической азотфиксацией.

Микроорганизмы, осуществляющие биологическую азотфиксацию, разделяют на свободноживущие и живущие в симбиозе с высшими растениями. Группа свободноживущих азотфиксаторов включает бактерии родов Azotobacter, Beijerinckia, Clostridium, а также фотосинтезирующие бактерии и некоторые виды цианобактерий - сине-зеленых водорослей. Все они гетеротрофы и нуждаются в углеводном источнике питания. Бактерии родов Azotobacter и Beijerinckia поселяются на поверхности корней высших растений и используют корневые выделения. Заселение цианобактериями рисовых полей увеличивает урожай риса примерно на 20 %. Однако сельскохозяйственное значение свободноживущих азотфиксаторов невелико. В умеренном климате ежегодная фиксация ими азота составляет не более 20 - 40 кг азота на гектар.

К группе симбиотических азотфиксаторов относятся бактерии рода Rhizobium, образующие клубеньки на корнях бобовых растений и фиксирующие, в среднем, от 100 до 400 кг азота на га. Большое значение в природе имеют некоторые лишайники, представляющие собой симбиоз гриба и азотфиксирующих цианобактерий. Они развиваются в субарктических зонах, на скалах и других бесплодных участках, являясь, таким образом, пионерами заселения суши. В настоящее время насчитывается около 190 видов растений разных семейств, способных симбиотически усваивать азот. К их числу относятся некоторые деревья и кустарники: ольха, восковница, лох, облепиха и другие.

Инфицирование растения-хозяина начинается с проникновения бактерий рода Rhizobium в клетку корневого волоска. Затем бактерии мигрируют в клетки коры и вызывают интенсивное деление инфицированных клеток, что приводит к образованию клубеньков на корнях. При этом сами бактерии превращаются в бактероиды, которые в 40 раз больше по объему исходной бактерии.

Молекула азота (N N) химически инертна. Для разрыва трех ее ковалентных связей в химическом процессе синтеза аммиака требуются катализаторы, высокие температура и давление. Биологическая фиксация азота осуществляется при невысокой температуре и нормальном давлении, что свидетельствует об очень высокой эффективности участвующего в этом процессе фермента нитрогеназы. Фермент состоит из двух компонентов: высокомолекулярного (200-250 кДа) Mo, Fe-белка и низкомолекулярного (50-70 кДа) Fe-белка. Субстрат N2 связывается и восстанавливается на Mo, Fe-белке, а Fe-белок служит переносчиком электронов от ферредоксина на Mo, Fe-белок. Реакция сопряжена с гидролизом АТФ. Для восстановления N2 до NH3 требуется 6 электронов, которые расходуются в три этапа:


2e + 2H+ 2e + 2H+ 2e + 2H+

N N  HN = NH  H2N - NH2  2 NH3

Поскольку нитрогеназный комплекс разрушается в присутствии кислорода, у азотфиксирующих микроорганизмов используется ряд механизмов для его защиты. У Rhizobium эту функцию выполняет гемсодержащий белок легоглобин или леггемоглобин, обладающий очень высоким сродством к кислороду. Он синтезируется клетками растения-хозяина и встраивается в мембрану бактероида. Функционирующий в бактероидах цикл Кребса служит источником субстратов для окисления в электрон-транспортной цепи, осуществляющей синтез АТФ, обеспечивает нитрогеназу электронами через ферредоксин, поставляет -кетоглутаровую кислоту, которая, реагируя с NH-4, образует глютаминовую аминокислоту, транспортируемую затем в клетки растения-хозяина.


4.3.2.3. Редукция нитрата

В органические соединения включается только аммонийный азот, поэтому ионы нитрата, поглощенные растением, восстанавливаются в клетках до аммиака. Редукция нитрата в растениях осуществляется в два этапа. Сначала происходит восстановление нитрата до нитрита, сопряженное с переносом 2 электронов и катализируемое ферментом нитратредуктазой:

2 e-

NO-3 + НAД(Ф)Н + Н+ NO-2 + НАД(Ф)+ + Н2О

Грибы и зеленые водоросли в качестве донора электронов используют восстановленный никотинамидадениндинуклеотидфосфат восстановленный (НАДФН). У высших растений фермент имеет сродство к никотинамидадениндинуклеотиду восстановленному (НАДН), который образуется в ходе реакций гликолиза и цикла Кребса.

Нитриты, образующиеся на первом этапе редукции нитратов, быстро восстанавливаются до аммиака ферментом нитритредуктазой. Она в качестве донора электронов использует восстановленный ферредоксин:

6 е-

NO-2 + 6 Фдвосст. + 8 Н+  NH+4 + 6 Фдокисл. + 2 Н2О

Обе эти реакции происходят в листьях и корнях. В зеленых частях растения нитритредуктаза локализована в хлоропластах. Восстановитель ферредоксин получает электроны прямо из фотосинтетической электронтранспортной цепи. В корнях нитрит восстанавливается в пропластидах. Так как в корнях ферредоксин отсутствует, то источником электронов служит НАДФН, образующийся в пентозофосфатном пути дыхания.


4.3.2.4. Пути ассимиляции аммиака

Аммиак, поступивший в растение из почвы, образовавшийся при восстановлении нитратов или в процессе фиксации молекулярного азота, усваивается растениями с образованием аминокислот и амидов. Фермент глутаматдегидрогеназа катализирует восстановительное аминирование -кетоглутаровой кислоты с образованием глютаминовой кислоты. На первом этапе реакции субстраты соединяются с образованием иминокислоты, которая затем восстанавливается в глютаминовую кислоту при участии НАД(Ф)Н. Оба этапа обратимы:


СООН H2O СООН СООН

   НАД(Ф)Н + Н+

С=О + NH3 C = NH  СН — NH2

    

СН2 CH2 CH2

H2O НАД+

СН2 CH2 CH2

  

СООН COOH COOH

-кетоглутаровая кислота -иминоглутарат глютаминовая кислота


Глютаматдегидрогеназа (мол. масса 200-300 кДа) обнаружена в листьях и корнях у всех высших растений, но в корнях ее активность выше. Фермент локализован преимущественно в митохондриях, хотя имеется в цитоплазме и в хлоропластах. Он состоит из 4-6 субъединиц. Это фермент обратимого действия и зависит от рН. Оптимум рН для аминирования на 1,5 единицы выше, чем для дезаминирования.

Глютаминсинтетаза катализирует реакцию, в которой глютаминовая кислота функционирует как акцептор NH3 для образования амида глютамина. Для этой реакции необходима АТФ:

СООН СООН

 

С — NH2 + NH3 + АТФ СН — NH2 + АДФ + Фн

 

СН2 CH2

 

СН2 CH2

 

СООН О=C-- NH2

Глютаминовая кислота глютамин


Ионы марганца, кобальта, кальция и магния являются кофакторами глютаминсинтетазы. Фермент обнаружен во всех органах растений и локализован в цитоплазме.

Помимо -кетоглутаровой кислоты, играющей основную роль в первичном связывании аммиака, роль акцепторов аммиака в растениях могут выполнять и другие органические кислоты, которые с помощью соответствующих ферментов взаимодействуют с NH3, образуя так называемые первичные аминокислоты. Они же служат акцептором аминогрупп в различных реакциях переаминирования. К числу этих органических кислот относятся щавелевоуксусная, пировиноградная, гидроксипировиноградная, глиоксиловая и другие, в процессе восстановительного аминирования которых получаются соответственно аспарагиновая кислота, аланин, серин, глицин.

Принято считать, что образование аспарагина преобладает в том случае, когда происходит распад белков в семенах. В клетках корня и листьев растущего растения идет, главным образом, образование глютамина. Таким образом, образование аспарагина - это путь обезвреживания аммиака, появляющегося при распаде белка - так называемая регрессивная ветвь азотного обмена, тогда как синтез глютамина - это путь обезвреживания аммиака при синтезе белка - прогрессивная ветвь азотного обмена.


Роль амидов в растении разнообразна. Это не только форма обезвреживания аммиака, это и транспортная форма азотных соединений, обеспечивающая отток их из одного органа в другие. Кроме того, амиды и их предшественники аминокислоты являются материалом для создания многих других аминокислот в реакциях переаминирования, когда аминогруппа аминокислоты обменивается с кетогруппой кетокислоты с образованием аминокислоты.


4.3.3. Фосфор

Растения поглощают из почвы свободную ортофосфорную кислоту и ее двух- и однозамещенные соли, растворимые в воде, а также и некоторые органические соединения фосфора, такие как фосфаты сахаров и фитин.

Содержание фосфора в растениях составляет около 0,2 % на сухую массу. Фосфор входит в состав нуклеиновых кислот, нуклеотидов, фосфолипидов и витаминов. Многие фосфорсодержащие витамины и их прозводные являются коферментами. Для фосфора характерна способность к образованию химических макроэргических связей с высоким энергетическим потенциалом. АТФ является энергетической валютой в живых организмах. Фосфорилирование, то есть присоединении остатка фосфорной кислоты, активирует клеточные белки и углеводы и необходимо для таких процессов, как дыхание, синтез РНК и белка, деление и дифференцировка клеток, защитные реакции против патогенов и т.д..

Основной запасной формой фосфора у растений является фитин - кальций-магниевая соль инозитфосфорной кислоты. Содержание фитина в семенах достигает 2 % от сухой массы, что составляет 50 % от общего содержания фосфора.

При дефиците фосфора снижается скорость поглощения кислорода, снижается активность дыхательных ферментов, локализованных в митохондриях, и активируются ферменты (оксидаза гликолевой кислоты, аскорбатоксидаза) немитохондриальных систем окисления, происходит распад фосфорорганических соединений, тормозится синтез белков и свободных нуклеотидов. Наиболее чувствительны к недостатку фосфора молодые растения. Симптомом фосфорного голодания является синевато-зеленая окраска, в первую очередь, старых листьев нередко с пурпурным из-за накопления антоцианов или бронзовым оттенком (свидетельство задержки синтеза белка и накопления сахаров). Листья становятся мелкими и более узкими. Приостанавливается рост растений, задерживается созревание урожая.


4.3.4. Сера

В почве сера находится в органической и неорганической формах. Органическая сера входит в состав растительных и животных остатков. Основные неорганические соединения серы в почве – сульфаты (CaSO4, MgSO4, Na2SO4). В затопляемых почвах сера находится в восстановленной форме в виде FeS, FeS2 или H2S.

Растения поглощают из почвы сульфаты и в очень незначительных количествах серосодержащие аминокислоты. Содержание серы в растениях составляет около 0,2 %. Однако в растениях семейства крестоцветных ее содержание значительно выше. Сера содержится в растениях в двух основных формах - окисленной в виде неорганического сульфата и восстановленной (аминокислоты, глутатион, белки). Процесс восстановления сульфата происходит в хлоропластах.


Одна из основных функций серы в белках - это участие SH-группы в образовании ковалентных, водородных и меркаптидных связей, поддерживающих трехмерную структуру белка. Дисульфидные мостики между полипептидными цепями и двумя участками одной цепи (по типу S-S-мостика в молекуле цистеина) стабилизируют молекулу белка. Сера входит в состав важнейших аминокислот - цистеина и метионина, которые могут находиться в растениях в свободной форме или в составе белков. Метионин относится к числу 10 незаменимых аминокислот и благодаря наличию серы и метильной группы обладает уникальными свойствами и входит в состав активных центров многих ферментов. Метиониновые остатки могут придавать молекуле белка гидрофобные свойства, что играет важную роль в стабилизации активной конформации ферментов в солевом окружении. Сера входит в состав многих витаминов и коферментов, таких как биотин, коэнзим А, глутатион, липоевая кислота. В связи с этим сера необходима для многих процессов обмена веществ (например, аэробная фаза дыхания, синтез жиров и так далее). Сера участвует в образовании полиаминов, которые влияют на структуру нуклеиновых кислот и рибосом, регулируют процессы деления клеток. Недостаточное снабжение растений серой тормозит синтез серосодержащих аминокислот и белков, снижает фотосинтез и скорость роста растений, приводит к разрушению хлоропластов. Симптомы дефицита серы - побледнение и пожелтение молодых, а затем и старых листьев.


4.3.5. Калий

Калий поглощается растениями в виде катиона. Его содержание в растениях составляет, в среднем, 0,9 %. Концентрация калия высока в огурцах, томатах и капусте, но особенно много его в подсолнечнике. В растениях калий больше сосредоточен в молодых растущих тканях. Около 80 % калия содержится в вакуолях и 1 % калия прочно связан с белками митохондрий и хлоропластов. Калий стабилизирует структуру этих органелл.

Калий участвует в создании разности электрических потенциалов между клетками. Он нейтрализует отрицательные заряды неорганических и органических анионов. Калий в значительной мере определяет коллоидные свойства цитоплазмы, так как способствует поддержанию состояния гидратации коллоидов цитоплазмы, повышая ее водоудерживающую способность. Тем самым калий увеличивает устойчивость растений к засухе и морозам. Калий необходим для работы устьичного аппарата. Известно более 60 ферментов, активируемых калием. Он необходим для включения фосфата в органические соединения, реакций переноса фосфатных групп, участвует в синтезе рибофлавина - компонента всех флавиновых дегидрогеназ. Под влиянием калия увеличивается накопление крахмала в клубнях картофеля, сахарозы в сахарной свекле, целлюлозы, гемицеллюлоз и пектиновых веществ в клеточной стенке, что приводит к повышению устойчивости соломины злаков к полеганию, а у льна и конопли повышает качество волокна.


Смотрите также файлы