Файл: Статистика-пособие.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.07.2020

Просмотров: 2831

Скачиваний: 47

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Введение

1. Цели и задачи дисциплины

2. Программа курса

3. Тематика контрольных (курсовых) работ

4. Методические указания и контрольные задания

Часть 1. Теоретическая статистика

Тема 1. Абсолютные и относительные статистические величины

Методические указания по теме

Контрольные задания по теме

Тема 2. Средние величины и показатели вариации

Методические указания по теме

Контрольные задания по теме

Тема 3. Выборочное наблюдение

Методические указания по теме

Контрольные задания по теме

Тема 4. Ряды динамики

Методические указания по теме

Контрольные задания по теме

Тема 5. Индексы

Методические указания по теме

Контрольные задания по теме

Тема 6. Статистическое изучение взаимосвязей

Методические указания по теме

Контрольные задания по теме

Часть 2. Социально-экономическая статистика

Тема 1. Социально-демографическая статистика

Методические указания по теме

Контрольные задания по теме

Тема 2. Статистика уровня жизни населения

Методические указания по теме

Контрольные задания по теме

Тема 3. Статистика национального богатства

Методические указания по теме

Контрольные задания

Тема 4. Статистика труда

Методические указания по теме

Контрольные задания

5. Экзаменационные вопросы

6. Литература

Приложения

Приложение 1. Значения F-критерия Фишера

Приложение 2. Значения t-критерия Стьюдента

Тема 3. Выборочное наблюдение

Методические указания по теме

Задача 1. На предприятии в порядке случайной бесповторной выборки было опрошено 100 рабочих из 1000 и получены следующие данные об их доходе за месяц:

Доход, у.е.

до 300

300-500

500-700

700-1000

более 1000

Число рабочих

8

28

44

17

3

С вероятностью 0,950 определить:

1) среднемесячный размер дохода работников данного предприятия;

2) долю рабочих предприятия, имеющих месячный доход более 700 у.е.;

3) необходимую численность выборки при определении среднемесячного дохода работников предприятия, чтобы не ошибиться более чем на 50 у.е.;

4) необходимую численность выборки при определении доли рабочих с размером месячного дохода более 700 у.е., чтобы при этом не ошибиться более чем на 5%.

Решение. Выборочный метод (выборка) используется, когда применение сплошного наблюдения физически невозможно из-за огромного массива данных или экономической нецелесообразности. Учитывая, что на основе выборочного обследования нельзя точно оценить изучаемый параметр (например, среднее значение – или долю какого-то признака – р) генеральной совокупности, необходимо найти пределы, в которых он находится. Для этого необходимо определить изучаемый параметр по данным выборки (выборочную среднюю – и/или выборочную долю – w) и его дисперсию (Дв). Для этого построим вспомогательную таблицу 3.

Таблица 3. Вспомогательные расчеты для решения задачи

Xi

fi

ХИ

XИfi

И - )2

И - )2fi

до 300

8

200

1600

137641

1101128

300 - 500

28

400

11200

29241

818748

500 - 700

44

600

26400

841

37004

700 - 1000

17

850

14450

77841

1323297

более 1000

3

1150

3450

335241

1005723

Итого

100

 

57100

 

4285900

По формуле (2) получим средний доход в выборке: = 57100/100 = 571 (у.е.). Применив формулу (2) и рассчитав ее числитель в последнем столбце таблицы, получим дисперсию среднего выборочного дохода: Дв = 4285900/100 = 42859.

Затем необходимо определить предельную ошибку выборки по формуле (2)1:

= t, (2)

где tкоэффициент доверия, зависящий от вероятности, с которой определяется предельная ошибка выборки; средняя ошибка выборки, определяемая для повторной выборки по формуле (2), а для бесповторной – по формуле (2):

= , (2) = , (2)

где n – численность выборки; N – численность генеральной совокупности.

В нашей задаче выборка бесповторная, значит, применяя формулу (2), получим среднюю ошибку выборки при определении среднего возраста в генеральной совокупности: = = 19,640 (у.е.).

Для определения средней ошибки выборки при определении доли рабочих с доходами более 700 у.е. в генеральной совокупности необходимо определить дисперсию этой доли. Дисперсия доли альтернативного признака w (признак, который может принимать только два взаимоисключающих значения – например, больше или меньше определенного значения) определяется по формуле (2):


. (2)

В нашей задаче долю альтернативного признака (рабочие с доходами более 700 у.е.) найдем как отношение числа таких рабочих к общему числу рабочих в выборке: w = 20/100 = 0,2 или 20%. Теперь определим дисперсию этой доли по формуле (2): =0,2*(1-0,2) = 0,16. Теперь можно рассчитать среднюю ошибку выборки по формуле (2): = = 0,038 или 3,8%.

Значения вероятности и коэффициента доверия t имеются в математических таблицах нормального закона распределения вероятностей (если в выборке более 30 единиц), из которых в статистике широко применяются сочетания, приведенные в таблице 4:

Таблица 4. Значения интеграла вероятностей Лапласа

0,683

0,866

0,950

0,954

0,988

0,997

t

1

1,5

1,96

2

2,5

3

В нашей задаче = 0,950, значит t = 1,96 (то есть предельная ошибка выборки в 1,96 раза больше средней). Предельная ошибка выборки по формуле (2) будет равна: = 1,96*19,64 = 38,494 (у.е.) при определении среднего дохода; = 1,96*0,038 = 0,075 или 7,5% при определении доли рабочих с доходами более 700 у.е.

После расчета предельной ошибки находят доверительный интервал обобщающей характеристики генеральной совокупности по формуле (2) – для средней величины и по формуле (2) – для доли альтернативного признака:

( - ) ( + ) (2) (w-) p (w +) (2)

В нашей задаче по формуле (2): 571-38,494 571+38,494 или 532,506 у.е. 609,494 у.е., то есть средний доход всех рабочих предприятия с вероятностью 95% будет лежать в пределах от 532,5 до 609,5 у.е.

Аналогично определяем доверительный интервал для доли по формуле (2): 0,2-0,075p0,2+0,075 или 0,125p0,275, то есть доля рабочих с доходами более 700 у.е. на всем предприятии с вероятностью 95% будет лежать в пределах от 12,5% до 27,5%.

При разработке программы выборочного наблюдения очень часто задается конкретное значение предельной ошибки ( ) и уровень вероятности ( ). Неизвестной остается минимальная численность выборки (n), обеспечивающая заданную точность. Ее можно получить, если подставить формулу (2) или (2) в формулу (2) и выразить из них n. В результате получатся формулы для вычисления необходимой численности повторной (2) и бесповторной (2) выборок.

nповт = ; (2) nб/повт = . (2)

В нашей задаче выборка бесповторная, значит, воспользуемся формулой (2), в которую подставим уже рассчитанные дисперсии среднего выборочного дохода рабочих (Дв = 42859) и доли рабочих с доходами более 700 у.е. (Дв = 0,16):

nб/повт = = 62 (чел.), nб/повт= = 197 (чел.).

Таким образом, необходимо включить в выборку не менее 62 рабочих при определении среднего месячного дохода работников предприятия, чтобы не ошибиться более чем на 50 у.е., и не менее 197 рабочих при определении доли рабочих с размером месячного дохода более 700 у.е., чтобы при этом не ошибиться более чем на 5%.


Контрольные задания по теме

Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов, в результате которой получено следующее распределение клиентов по размеру вкладов:

Размер вклада, у.е.

Число вкладчиков, чел.

Вариант

1

2

3

4

5

6

7

8

9

10

до 5000

10

80

100

50

60

30

90

20

70

40

5 000 – 15 000

40

60

150

30

40

110

75

65

90

80

15 000 – 30 000

25

35

70

90

120

90

130

140

60

95

30 000 – 50 000

30

45

40

5

80

30

60

75

20

115

свыше 50 000

15

10

30

25

50

15

25

5

10

5

С вероятностью 0,954 определить:

1) средний размер вклада во всем банке;

2) долю вкладчиков во всем банке с размером вклада свыше 15000 у.е.;

3) необходимую численность выборки при определении среднего размера вклада, чтобы не ошибиться более чем на 500 у.е.;

4) необходимую численность выборки при определении доли вкладчиков во всем банке с размером вклада свыше 30 000 у.е., чтобы не ошибиться более чем на 10%.


Тема 4. Ряды динамики

Методические указания по теме


Задача 1. Смертность от болезней системы кровообращения в России за период 1995-2004 гг. характеризуется следующим рядом динамики.

Год

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

Умершие,

тыс. чел.

1163,5

1113,7

1100,3

1094,1

1187,8

1231,4

1253,1

1308,1

1330,5

1287,7

Вычислить: абсолютные, относительные, средние изменения и их темпы базисным и цепным способами. Проверить ряд на наличие в нем линейного тренда, на основе которого рассчитать интервальный прогноз на 2005 год с вероятностью 95%.

Решение. Любое изменение уровней ряда динамики определяется базисным (сравнение с первым уровнем) и цепным (сравнение с предыдущим уровнем) способами. Оно может быть абсолютным (разность уровней ряда) и относительным (соотношение уровней).

Базисное абсолютное изменение представляет собой разность конкретного и первого уровней ряда (2), а цепное абсолютное изменение представляет собой разность конкретного и предыдущего уровней ряда (2).

(2) (2)

По знаку абсолютного изменения делается вывод о характере развития явления: при > 0 — рост, при < 0 — спад, при = 0 — стабильность.

В нашей задаче эти изменения определены в 3-м и 4-м столбцах таблицы 5. Для проверки правильности расчетов применяется правило, согласно которому сумма цепных абсолютных изменений равняется последнему базисному. В нашей задаче это правило выполняется: =124,2 и =124,2.

Базисное относительное изменение представляет собой соотношение конкретного и первого уровней ряда (2), а цепное относительное изменение представляет собой соотношение конкретного и предыдущего уровней ряда (2).

(2) (2)

Относительные изменения уровней — это по существу индексы динамики, критериальным значением которых служит 1. Если они больше ее, имеет место рост явления, меньше ее — спад, а при равенстве единице наблюдается стабильность явления.

В нашей задаче эти изменения определены в 5-м и 6-м столбцах таблицы 5.

Вычитая единицу из относительных изменений, получают темп изменения уровней, критериальным значением которого служит 0. При положительном темпе изменения имеет место рост явления, при отрицательном — спад, а при нулевом темпе изменения наблюдается стабильность явления. В нашей задаче темпы изменения определены в 7-м и 9-м столбцах таблицы 5, а в 8-м и 10-м сделан вывод о характере развития изучаемого явления. Для проверки правильности расчетов применяется правило, согласно которому произведение цепных относительных изменений равняется последнему базисному. В нашей задаче это правило выполняется: =1,107 и =1,107.

Таблица 5. Вспомогательные расчеты для решения задачи

Обобщенной характеристикой ряда динамики является средний уровень ряда . Способ расчета зависит от того, моментный ряд или интервальный (см. рис.3):












Рис.3. Методы расчета среднего уровня ряда динамики.

В нашей задаче ряд динамики интервальный, значит, применяем формулу средней арифметической простой (2): = 12070,2 / 10 = 1207,02 (тыс. чел.). То есть за период 1995-2004 в России в среднем за год от болезней системы кровообращения умирало 1207,02 тыс. чел.

Кроме среднего уровня в рядах динамики рассчитываются и другие средние показатели – среднее изменение уровней ряда (базисным и цепным способами), средний темп изменения.

Базисное среднее абсолютное изменение – это частное от деления последнего базисного абсолютного изменения на количество изменений уровней (2). Цепное среднее абсолютное изменение уровней ряда – это частное от деления суммы всех цепных абсолютных изменений на количество изменений (2).

Б =(2) Ц =(2)

По знаку средних абсолютных изменений также судят о характере изменения явления в среднем: рост, спад или стабильность. Из правила контроля базисных и цепных абсолютных изменений следует, что базисное и цепное среднее изменение должны быть равными. В нашей задаче = 124,2/9 = 13,8, то есть ежегодно в среднем смертность от болезней системы кровообращения растет на 13,8 тыс. чел.

Наряду со средним абсолютным изменением рассчитывается и среднее относительное. Базисное среднее относительное изменение определяется по формуле (2), а цепное среднее относительное изменение – по формуле (2):

Б= = (2) Ц=(2)

Естественно, базисное и цепное среднее относительное изменения должны быть одинаковыми и сравнением их с критериальным значением 1 делается вывод о характере изменения явления в среднем: рост, спад или стабильность. В нашей задаче = = 1,0114, то есть ежегодно в среднем смертность от болезней системы кровообращения растет в 1,0114 раза.

Вычитанием 1 из среднего относительного изменения образуется соответствующий средний темп изменения, по знаку которого также можно судить о характере изменения изучаемого явления, отраженного данным рядом динамики. В нашей задаче = 1,0114 – 1 = 0,0114, то есть ежегодно в среднем смертность от болезней системы кровообращения растет на 1,14%.

Проверка ряда динамики на наличие в нем тренда (тенденции развития ряда) возможна несколькими способами (метод средних, Фостера и Стюарта, Валлиса и Мура и пр.), но наиболее простым является графическая модель, где на графике по оси абсцисс откладывается время, а по оси ординат – уровни ряда. Соединив полученные точки линиями, в большинстве случаев можно выявить тренд визуально. Тренд может представлять собой прямую линию, параболу, гиперболу и т.п. В итоге приходим к трендовой модели вида:

, (2)

где – математическая функция развития; – случайное или циклическое отклонение от функции; t – время в виде номера периода (уровня ряда). Цель такого метода – выбор теоретической зависимости в качестве одной из функций:

прямая линия; – гипербола; – парабола; – степенная; – ряд Фурье.