Файл: Статистика-пособие.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.07.2020

Просмотров: 2735

Скачиваний: 46

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Введение

1. Цели и задачи дисциплины

2. Программа курса

3. Тематика контрольных (курсовых) работ

4. Методические указания и контрольные задания

Часть 1. Теоретическая статистика

Тема 1. Абсолютные и относительные статистические величины

Методические указания по теме

Контрольные задания по теме

Тема 2. Средние величины и показатели вариации

Методические указания по теме

Контрольные задания по теме

Тема 3. Выборочное наблюдение

Методические указания по теме

Контрольные задания по теме

Тема 4. Ряды динамики

Методические указания по теме

Контрольные задания по теме

Тема 5. Индексы

Методические указания по теме

Контрольные задания по теме

Тема 6. Статистическое изучение взаимосвязей

Методические указания по теме

Контрольные задания по теме

Часть 2. Социально-экономическая статистика

Тема 1. Социально-демографическая статистика

Методические указания по теме

Контрольные задания по теме

Тема 2. Статистика уровня жизни населения

Методические указания по теме

Контрольные задания по теме

Тема 3. Статистика национального богатства

Методические указания по теме

Контрольные задания

Тема 4. Статистика труда

Методические указания по теме

Контрольные задания

5. Экзаменационные вопросы

6. Литература

Приложения

Приложение 1. Значения F-критерия Фишера

Приложение 2. Значения t-критерия Стьюдента

Вариант 8. Определить процент выполнения плана по продажам условных школьных тетрадей (1 у.ш.т. – 12 листов) по каждому виду тетрадей и в целом по магазину по следующим данным:

Вид тетради

Цена, руб./шт.

Объем продаж, тыс. шт.

по плану

фактически

Тетрадь общая 90 листов

20

50

40

Тетрадь общая 48 листов

13

200

350

Тетрадь общая 16 листов

9

700

500

Вариант 9. В России на начало 2005 года численность населения составила 144,2 млн. чел., в течение года: родилось 1,46 млн. чел., умерло – 2,3 млн. чел., мигрировало из других государств 2,09 млн. чел., мигрировало за границу – 1,98 млн. чел. Охарактеризовать изменение численности населения в 2005 году с помощью относительных величин.

Вариант 10. Определить общий объем фактически выпущенной условной консервной продукции (1 у.к.б. = 0,33 л) по следующим данным:

Вид продукции

Планируемый объем выпуска продукции, тыс. шт.

Выполнение плана, %

Томатная паста 1 л

500

85

Томатная паста 0,5 л

750

104

Томатная паста 0,2 л

250

130


Тема 2. Средние величины и показатели вариации

Методические указания по теме


Задача 1. Имеются следующие данные о возрастном составе студентов группы заочного отделения ВУЗа (лет): 19; 19; 19; 20; 20; 20; 20; 20; 20; 20; 20; 20; 21; 21; 21; 22; 23; 23; 24; 25; 25; 25; 26; 27; 29.

Для анализа распределения студентов по возрасту требуется: 1) построить интервальный ряд распределения и его график; 2) рассчитать модальный, медианный и средний возраст, установить его типичность с помощью коэффициентов вариации; 3) проверить распределение на нормальность с помощью коэффициентов асимметрии и эксцесса.

Решение. Для построения интервального ряда из дискретного используется формула Стерджесса, с помощью которой определяется оптимальное количество интервалов (n):

n = 1 +3,322 lg N, (2)

где N – число величин в дискретном ряде.

В нашей задаче n = 1 + 3,322lg25 = 1 + 3,322*1,398 = 5,64. Так как число интервалов не может быть дробным, то округлим его до ближайшего целого числа, т.е. до 6.

После определения оптимального количества интервалов определяем размах интервала по формуле:

h = H / n, (2)

где H – размах вариации, определяемый по формуле (2).

H = Хмах –Хmin, (2)

где Xмax и Xmin — максимальное и минимальное значения в совокупности.

В нашей задаче h = (29 – 19)/6 = 1,67.

Интервальная группировка данных приведена в первом столбце таблицы 1, которая содержит также алгоритм и промежуточные расчеты.

Таблица 1. Вспомогательные расчеты для решения задачи

Xi , лет

fi

ХИ

XИfi

ХИ-

И- )2

И- )2fi

И- )3 fi

И- )4 fi

до 20,67

12

19,833

237,996

-2,134

25,602

4,552

54,623

-116,539

248,638

20,67-22,33

4

21,5

86,000

-0,467

1,866

0,218

0,871

-0,406

0,189

22,33-24

3

23,167

69,501

1,200

3,601

1,441

4,323

5,190

6,231

24-25,67

3

24,833

74,499

2,866

8,599

8,217

24,650

70,659

202,543

25,67-27,33

2

26,5

53,000

4,533

9,067

20,552

41,105

186,348

844,806

более 27,33

1

28,167

28,167

6,200

6,200

38,446

38,446

238,383

1478,091

Итого

25

549,163

54,937

164,018

383,636

2780,498

На основе этой группировки строится график распределения возраста студентов (рис.2).

Рис.2. График распределения возраста студентов.

Мода это наиболее часто повторяющееся значение признака. Для интервального ряда с равными интервалами величина моды определяется по формуле (2):

, (2)

где ХMo – нижнее значение модального интервала; fMo – число наблюдений или объем взвешивающего признака (вес признака) в модальном интервале; fMo-1 – то же для интервала, предшествующего модальному; fMo+1 – то же для интервала, следующего за модальным; h – величина интервала изменения признака в группах.


В нашей задаче чаще всего повторяется (12 раз) первый интервал возраста (до 20,67), значит, это и есть модальный интервал. Используя формулу (2), определяем точное значение модального возраста:

Мо = 19 + 1,667*(12-0)/(2*12-4-0) = 20 (лет).

Медиана – это такое значение признака, которое приходится на середину ранжированного ряда. Таким образом, в ранжированном ряду распределения одна половина ряда имеет значения признака больше медианы, другая – меньше медианы. Для интервального ряда с равными интервалами величина медианы определяется так:

, (2)

где XMe – нижняя граница медианного интервала; h – его величина (размах); – сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала; fMe – число наблюдений или объем взвешивающего признака в медианном интервале.

В нашей задаче второй интервал возраста (от 20,67 до 22,33) является медианным, так как на него приходится середина ряда распределения возраста. Используя формулу (2), определяем точное значение медианного возраста:

Ме = 20,67 + 1,667*(12,5-12)/4 = 20,878 (года).

Средняя величина – это обобщающий показатель совокупности, характеризующий уровень изучаемого явления или процесса. Средние величины могут быть простыми и взвешенными. Простая средняя рассчитывается при наличии двух и более статистических величин, расположенных в произвольном (несгруппированном) порядке, по общей формуле (2). Взвешенная средняя величина рассчитывается по сгруппированным статистическим величинам с использованием общей формулы (2).

=; (2) =. (2)

При этом обозначено: Xi – значения отдельных статистических величин или середин группировочных интервалов; m - показатель степени, от значения которого зависят виды средних величин. Используя формулы (2) и (2) при разных показателях степени m, получаем частные формулы каждого вида (см. таблицу 2).

Таблица 2. Виды степенных средних и их применение

m

Название

средней

Формула расчета средней

Когда применяется

простая

взвешенная

1

Арифметическая

=(2)

=(2)

Чаще всего, кроме тех случаев, когда должны применяться другие виды средних

–1

Гармоническая

ГМ = (2)

ГМ = (2)

Для осреднения величин с дробной размерностью при наличии дополнительных данных по числителю дробной размерности

0

Геометрическая

(2)

(2)

Для осреднения цепных индексов динамики

2

Квадратическая

=(2)

=(2)

Для осреднения вариации признака (расчет средних отклонений)

3

Кубическая

=(2)

=(2)

Для расчета индексов нищеты населения

1

Хронологическая

(2)

(2)

Для осреднения моментных статистических величин


Выбор вида формулы средней величины зависит от содержания осредняемого признака и конкретных данных, по которым ее приходится вычислять. Показатель степени m в общей формуле средней величины оказывает существенное влияние на значение средней величины: по мере увеличения степени возрастает и средняя величина (правило мажорантности средних величин), то есть < < < < . Так, если , то , а если , то .

В нашей задаче, применяя формулу (2) и подставляя вместо середины интервалов возраста ХИ, определяем средний возраст студентов: = 549,163/25 = 21,967 (года). Теперь осталось определить типичность или нетипичность найденной средней величины. Это осуществляется с помощью расчета показателей вариации. Чем ближе они к нулю, тем типичнее найденная средняя величина для изучаемой статистической совокупности. При этом критериальным значением коэффициента вариации служит 1/3.

Коэффициенты вариации рассчитываются как отношение среднего отклонения к средней величине. Поскольку среднее отклонение может определяться линейным и квадратическим способами, то соответствующими могут быть и коэффициенты вариации.

Среднее линейное отклонение определяется по формулам (2) и (2):

простое; (2) – взвешенное. (2)

Среднее квадратическое отклонение определяется как корень квадратный из дисперсии, то есть по формуле (2):

. (2)

Дисперсия определяется по формулам (2) или (2):

простая; (2) взвешенная. (2)

В нашей задаче, применяя формулу (30), определим ее числитель и внесем в расчетную таблицу. В итоге получим среднее линейное отклонение: Л = 54,937/25 = 2,198 (года). Разделив это значение на средний возраст, получим линейный коэффициент вариации: = 2,198/21,967 = 0,100. По значению этого коэффициента для рассмотренной группы студентов делаем вывод о типичности среднего возраста, т.к. расчетное значение коэффициента вариации не превышает критериального (0,100 < 0,333).

Применяя формулу (2), получим в итоге дисперсию: Д = 164,018/25 = 6,561. Извлечем из этого числа корень и получим в результате среднее квадратическое отклонение: = = 2,561 (года). Разделив это значение на средний возраст, получим квадратический коэффициент вариации: = 2,561/21,967 = 0,117. По значению этого коэффициента для рассмотренной группы студентов можно сделать вывод о типичности среднего возраста, т.к. расчетное значение коэффициента вариации не превышает критериального (0,117 < 0,333).

В качестве показателей асимметрии используются: коэффициент асимметрии – нормированный момент третьего порядка (2) и коэффициент асимметрии Пирсона (2):

, (2) . (2)

Если значение коэффициента асимметрии положительно, то в ряду преобладают варианты, которые больше средней (правосторонняя скошенность), если отрицательно – левосторонняя скошенность. Если коэффициент асимметрии равен 0, то вариационный ряд симметричен.

В нашей задаче = =383,636/25 = 15,345; =2,5613= 16,797; =15,345/16,797 = 0,914 > 0, значит, распределение студентов по росту с правосторонней асимметрией. Это подтверждает и значение коэффициента асимметрии Пирсона: As = (21,967-20)/2,561 = 0,768.


Для характеристики крутизны распределения используется центральный момент 4-го порядка:

= . (2)

Для образования безразмерной характеристики определяется нормированный момент 4-го порядка , который и характеризует крутизну (заостренность) графика распределения. При измерении асимметрии эталоном служит нормальное (симметричное) распределение, для которого =3. Поэтому для оценки крутизны данного распределения в сравнении с нормальным вычисляется эксцесс распределения (2):

. (2)

Для приближенного определения эксцесса может быть использована формула Линдберга (2):

, (2)

где – доля количества вариант, лежащих в интервале, равном половине (в ту и другую сторону от средней величины).

В нашей задаче числитель центрального момента 4-го порядка рассчитан в последнем столбце расчетной таблицы. В итоге по формуле (2) имеем: Ex = (2780,498/25)/2,5614–3 = 111,220/43,017–3 = -0,415. Так как Ex<0, то распределение низковершинное. Это подтверждает и приблизительный расчет по формуле (2): в интервале 21,967 0,5*2,561, то есть от 20,687 до 23,248 находится примерно 21,4% студентов. Таким образом, Ex = 0,214 – 0,3829 = –0,169.

Контрольные задания по теме

По имеющимся в следующей таблице данным по группе из 20 студентов заочного отделения необходимо:

1) построить интервальный ряд распределения признака и его график;

2) рассчитать модальное, медианное и среднее значение, установить его типичность с помощью коэффициентов вариации;

3) проверить распределение на нормальность с помощью коэффициентов асимметрии и эксцесса.

п/п

Вариант

1

2

3

4

5

6

7

8

9

10

Рост,

см

Вес,

кг

Доход,

у.е./мес.

IQ (тест Айзенка)

Тет-радь,

листов

Воз-раст,

лет

Соот-ношение

«рост/вес»

Стаж

работы, мес.

Кол-во

друзей, чел.

Время решения контрольной, час.

1

159

45

430

95

24

20

3,533

26

5

8,5

2

160

61

640

115

32

25

2,623

63

7

6,2

3

161

56

610

111

24

28

2,875

94

10

6,8

4

162

48

330

97

24

19

3,375

16

4

12,0

5

162

54

420

105

60

23

3,000

49

2

7,5

6

164

58

290

98

16

20

2,828

14

6

10,0

7

166

51

480

109

90

26

3,255

78

9

7,2

8

169

62

610

120

24

19

2,726

10

5

4,2

9

170

70

840

122

48

30

2,429

130

10

3,5

10

170

72

330

92

24

20

2,361

20

3

9,5

11

171

73

560

110

16

28

2,342

86

8

7,8

12

171

64

450

102

48

21

2,672

29

4

8,0

13

172

73

350

108

32

26

2,356

75

7

6,0

14

174

68

310

100

48

21

2,559

22

4

4,8

15

176

81

380

104

64

20

2,173

32

1

8,6

16

176

84

340

104

48

19

2,095

21

5

10,0

17

178

76

660

128

90

27

2,342

96

8

4,5

18

181

90

450

106

48

26

2,011

70

9

12,5

19

183

68

540

105

32

23

2,691

59

6

10,5

20

192

95

750

117

60

27

2,021

98

4

6,5