Файл: Отчеты оформляются в виде файлов формата Microsoft Word (файлы других форматов не принимаются), размер шрифта 1214.docx

ВУЗ: Не указан

Категория: Отчет по практике

Дисциплина: Не указана

Добавлен: 12.01.2024

Просмотров: 614

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Лабораторный практикум

Основные требования к отчетам по лабораторным работам

Лабораторная/практическая работа № 1

Лабораторная/практическая работа № 2

Лабораторная/практическая работа № 3

Лабораторная/практическая работа № 4

LL(1)-грамматик. Левую рекурсию всегда можно преобразовать в правую или в общую. Однако это преобразование не гарантирует перехода грамматики в класс LL(1), потому что не только свойство левой рекурсии может быть причиной непригодности грамматики для построения нисходящего синтаксического акцептора. В общем случае задача нахождения LL(1)-грамматики, эквивалентной заданной грамматике, алгоритмически неразрешима.Алгоритм нисходящего восстановления дерева грамматического разбора, сформулированный выше, в принципе может быть использован с любой LL(1)-грамматикой, но применение его на практике потребует уточнения ряда деталей, в том числе способа поиска правила, способа представления и хранения узлов дерева и т.д. Такая детализация может привести к радикальному изменению внешнего вида алгоритма при сохранении его сути.Реализация общего алгоритма для конкретной грамматики обычно сводится к построению специального алгоритма, определяемого совокупностью порождающих правил, или к преобразованию грамматики в управляющую таблицу конечного автомата. Методы построения специальных алгоритмов или управляющих таблиц по грамматике легко формализуются. Следовательно, если заданная грамматика принадлежит классу LL(1)-грамматик, то построение нисходящего синтаксического акцептора предложений порождаемого ею языка может быть автоматизировано.Существует несколько вариантов реализации общего алгоритма и методов соответствующего преобразования грамматики. Пакет ВебТрансБилдер для каждого инструментального языка содержит набор шаблонов преобразования грамматики в код программы транслятора. Для построения нисходящих синтаксических анализаторов (парсеров) существуют шаблоны, формирующие: парсер, как нисходящий стековый автомат с одним состоянием; парсер, как нисходящий стековый автомат с несколькими состояниями; парсер, как совокупность функций. Построение парсера, как нисходящего стекового автомата с одним состоянием. Поведение нисходящего стекового автомата с одним состоянием определяется управляющей таблицей, столбцы которой соответствуют входным символам, строки – символам, которые могут находиться в стеке, а в клетках содержится последовательность операций над стеком, входной цепочкой символов и состоянием автомата.Обычные для стековой памяти операции будут обозначаться так:! X – занесение символа (или цепочки) символов X в стек (аналог операции push), при этом первый символ цепочки окажется в стеке под всеми остальными, последний символ окажется на самом верху стека;^ – снятие одного символа с верхушки стека (аналог операции pop). Заметим, что попытка выполнения этой операции при пустом стеке должна приводить к останову автомата по обнаружению ошибки во входной цепочке.Над входным потоком определена единственная операция, которую будем обозначать так:> – чтение следующего символа из входной цепочки.Для управления состоянием автомата используется единственный знак операции Stop, предназначенный для останова по успешному окончанию восстановления дерева разбора. Для обозначения операции останова по обнаружению ошибок во входной цепочке используется обычное соглашение: соответствующая клетка управляющей таблицы пуста.Процедура преобразования системы порождающих правил грамматики в управляющую таблицу автомата, реализованная в шаблонах пакета.Шаг 1. Построить заготовку таблицы, имеющую ровно столько столбцов, сколько символов есть в терминальном алфавите грамматики (включая псевдотерминал ►), и столько строк, сколько символов есть в нетерминальном алфавите (ниже мы будет показано, что в процессе преобразования возможно появление дополнительных строк). Озаглавить столбцы терминалами грамматики (порядок следования столбцов не имеет значения), строки – нетерминалами (опять же в произвольном порядке).Шаг 2. В силу т ого, что автомат предназначен для разбора цепочки, выводимой из правой части специального добавочного правила грамматики Z : S ►, перед запуском в его стеке должна оказаться правая часть этого правила, причем нижним символом в стеке должен быть псевдотерминал ►, а верхним, соответственно – начальный нетерминал грамматики. Поскольку рано или поздно псевдотерминал ► может стать верхним символом в стеке, к таблице добавляется еще одна строка, озаглавленная этим символом.Шаг 3. Для каждой строки таблицы, начиная с первой, в ее клетках формируются знаки операций следующим образом:Шаг 3.1. Если строка озаглавлена нетерминальным символом (пусть это будет символ N), то последовательно в произвольном порядке перебираются все правила грамматики, имеющие этот нетерминал в левой части.Шаг 3.1.1. Если очередное правило имеет вид N : M , где M – нетерминальный символ, а  – цепочка символов s1 s2 ... sk (возможно, пустая), то во все клетки данной строки, находящиеся на пересечении со столбцами, помеченными терминалами из множества выбора данного правила, заносится такая последовательность знаков операций:^ !sk... s2 s1MЕсли среди символов s1 s2 ... sk встречаются терминалы, то к таблице добавляются новые строки, озаглавленные этими терминалами, но только при условии, что таких строк в ней еще нет.Шаг 3.1.2. Если очередное правило имеет вид N : t , где t – терминальный символ, а  – возможно, пустая цепочка символов s1 s2 ... sk, то в клетку, находящуюся на пересечении со столбцом, помеченным терминалом t (очевидно, что множество выбора данного правила содержит единственный символ t), заносится такая последовательность знаков операций:^ !sk... s2 s1 >Если среди символов s1 s2 ... sk встречаются терминалы, то к таблице добавляются новые строки, озаглавленные этими терминалами, но только при условии, что таких строк в ней еще нет.Эта последовательность знаков операций завершается чтением следующего входного символа вместо записи первого символа правой части правила в стек. Причина очевидна: терминал, с которого начинается цепочка правой части правила, совпадает с текущим входным символом. Если его заносить в стек, то только для того, чтобы удалить на следующем такте.Шаг 3.1.3. Если очередное правило имеет вид N : , то во все клетки данной строки, находящиеся на пересечении со столбцами, помеченными терминалами из множества выбора данного правила, заносится единственный знак операции ^. Очевидно, что удаление символа N с верхушки стека без выполнения каких-либо других действий соответствует применению этого правила.Шаг 3.2. Если текущая строка озаглавлена терминалом t, то в клетку, находящуюся на пересечении с одноименным столбцом (т. е. также озаглавленным терминалом t), заносится последовательность знаков операций ^ >. Терминал t мог быть занесен в стек при выполнении последовательности операций, сформированных согласно шагам 3.1.1 и 3.1.2. Если он появился на верхушке стека, то входным символом обязан быть именно этот терминал, иначе входная цепочка неверна. Последовательность знаков операций ^ > обеспечивает переход к следующим символам из стека и из входной цепочки.Шаг 3.3. И, наконец, если текущая строка озаглавлена псевдотерминалом ►, то в клетку, находящуюся на пересечении с одноименным столбцом, заносится знак операции Stop.Алгоритм работы программной модели автомата очень прост и здесь не описывается Построение парсера, как нисходящего стекового автомата с несколькими состояниями. Функционирование конечного автомата со стековой памятью и несколькими состояниями также определяется управляющей таблицей, но имеющей совершенно другую структуру. Предполагается, что автомат при запуске оказывается в особом начальном состоянии, на каждом такте по входному символу и текущему состоянию определяет и выполняет операции над входным потоком символов, стековой памятью и собственным состоянием.Для выявления характера этих операций и структуры управляющей таблицы рассмотрим еще раз, но несколько с другой точки зрения, существо процесса нисходящего синтаксического акцепта.Процесс нисходящего восстановления дерева грамматического разбора можно интерпретировать как управляемое входной цепочкой движение по порождающим правилам грамматики. Для такого рассмотрения удобно считать, что каждое правило завершается обозначением пустой цепочки . В этом случае обработка правил с пустой правой частью ничем не будет отличаться от обработки остальных правил. Управляющая таблица автомата при этом будет обладать некоторой избыточностью, впоследствии легко удаляемой.Начиная с нетерминала S в правой части добавочного правила Z:S►, движение осуществляется следующим образом. По правым частям правил посимвольно слева направо. Обработка любого нетерминала состоит в переключении на первое правило для этого нетерминала. Более точно, на состояние, соответствующее нетерминалу из левой части первого правила с сохранением в стеке точки возврата в текущую правую часть правила. До переключения осуществляется проверка принадлежности текущего входного символа к множеству предшественников данного нетерминала (т.е. к объединению множеств выбора всех правил, в левой части которых находится этот нетерминал). Обработка терминального символа состоит в проверке его совпадения с текущим входным символом и при положительном результате проверки завершается чтением следующего терминала из входной цепочки. Отрицательный результат проверки приводит к останову автомата по обнаружению ошибки.Обработка пустой цепочки , завершающей каждое правило, состоит в возврате по номеру состояния, снимаемого с верхушки стека. Возврат в состояние, соответствующее псевдотерминалу ►, рассматривается как успешное окончание процесса восстановления дерева при условии, что текущим входным символом является признак конца входной цепочки ►. Если же в этот момент текущим входным символом является любой другой терминал, то выполняется останов по ошибке. По левым частям правил сверху вниз. При этом движении используются только правила, имеющие в левой части один и тот же нетерминал. Для каждого правила прежде всего проверяется, содержит ли его множество выбора текущий входной символ. При отрицательном результате проверки осуществляется переход к левой части следующего правила, тем самым обеспечивается поиск подходящего правила для замены нетерминала.При положительном результате проверки выполняется переключение на обработку первого символа из правой части данного правила, т. е. подстановка правой части вместо нетерминала из левой части.Если такого правила нет вообще (ни одно из множеств выбора правил для данного нетерминала не содержит текущего входного символа), то восстановить дерево невозможно и следует остановиться по обнаружении ошибки во входном предложении.Таким образом, каждому символу каждого правила грамматики (в том числе нетерминалам, находящимся в левых частях правил, и обозначениям пустой цепочки, замыкающим каждое правило), должно быть поставлено в соответствие в точности одно состояние автомата. С каждым состоянием должно быть связано множество выбора и два адреса перехода (один используется при положительном результате проверки принадлежности текущего входного символа множеству выбора, второй – при отрицательном). Под адресом перехода понимается номер состояния. Ниже показано, что при соблюдении определенных правил нумерации состояний и введении операции управления остановом по ошибке можно обойтись только одним адресом перехода. С каждым состоянием должны быть также связаны операции управления стековой памятью (занесение адреса возврата, снятие адреса с верхушки стека и переключение в состояние возврата) и операция управления чтением следующего входного символа. Все операции управления могут задаваться булевскими значениями true/ false, которые далее называются флажками. Обозначения для флажков управления операциями: флажок a управляет чтением следующего входного символа; флажок s управляет занесением адреса точки возврата (вычисляемого как номер текущего состояния плюс 1) в стек; флажок r обеспечивает переключение автомата в состояние, номер которого снимается с верхушки стека возвратов; флажок e запрещает останов по ошибке в случае, когда состояние соответствует нетерминалу из левой части и есть еще хотя бы одно правило для такого нетерминала. Таким образом, каждая клетка управляющей таблицы автомата должна содержать следующие поля: Номер состояния Флажки Адрес перехода Множество выбора состояния Действие a s r e При практических применениях автоматной реализации рекурсивного спуска в состав клетки управляющей таблицы обычно включаются дополнительное поле, указывающее на действие, сопровождающее синтаксический акцепт (например, для нейтрализации ошибок) или относящееся к задачам семантического анализа и формирования объектного кода.Для построения управляющей таблицы автомата по заданной LL(1)-грам­матике (в качестве иллюстрации используется грамматика G a2, к каждой правой части правил которой дописано обозначение пустой цепочки ) необходимо выполнить следующую процедуру.Шаг 1. Определение и нумерация множества состояний. Для этого всем символам системы порождающих правил грамматики, исключая символ Z в левой части добавочного правила, но включая обозначения пустых цепочек присваивается номер так, чтобы: символ S в добавочном правиле Z : S ► получил номер 0; Таблица 4.2. Грамматика G a2 0 Z : S0  1 1 S2 : U11 R12 13 2 R3 : + 14 S15 16 3 R4 : 17 4 U5 : V18 W19 20 5 W6 : *21 U22 23 6 W7 : 24 7 V8 : ( 25 S26 )27 28 8 V9 : i29 30 9 V10 : c31 32 символы, следующие друг за другом в правых частях правил, имели последовательно возрастающие номера; при соблюдении этого требования адрес возврата, помещаемый в стек при обработке нетерминального символа в правой части правила, вычисляется как номер текущего состояния плюс единица; одинаковые нетерминалы в левых частях правил имели последовательно возрастающие номера; при соблюдении этого требования легко обеспечивается перебор правил при обработке нетерминалов из левых частей правил и . В табл. 4.2. приведены результаты выполнения шага 1 для модифицированной грамматики Ga2.Шаг 2. Формирование множества выбора для каждого состояния управляющей таблицы. Способ образования множества выбора состояния зависит от того, какому символу (терминалу, нетерминалу или пустой цепочке) и из какой части правила оно поставлено в соответствие.Если состояние соответствует нетерминалу N из левой части правила N : , то его множество выбора есть множество выбора данного правила:– множество предшественников цепочки , если она содержит хотя бы один терминал или неаннулируемый нетерминал;– множество последователей N, если цепочка  пуста;– объединение этих двух множеств, если цепочка  не пуста, но состоит только из аннулируемых нетерминалов).Если состояние соответствует нетерминальному символу из правой части правила, то его множество выбора есть объединение множеств выбора всех правил грамматики для этого нетерминала.Если состояние соответствует терминальному символу (такие символы могут появляться только в правых частях правил), то его множество выбора содержит только этот терминальный символ.Для состояний, соответствующих обозначениям пустой цепочки, множества выбора есть множество последователей нетерминала из левой части данного правила.Шаг 3. Формирование значений флажков управления операциями.Флажок a устанавливается (имеет значение true) только в состояниях, соответствующих терминальным символам (которые, естественно, могут находиться только в правых частях правил).Флажок s устанавливается в состояниях, соответствующих нетерминальным символам, находящимся в правых частях правил.Флажок r устанавливается в состояниях, соответствующих обозначениям пустой цепочки символов в конце правой части каждого правила.Флажок e устанавливается в состояниях, соответствующих нетерминальным символам, находящимся в левой части правил, за исключением последнего правила для каждого нетерминала.Шаг 4. Образование адреса перехода. В клетках состояний, соответствующих нетерминалам из левых частей правил, адрес перехода должен быть равен номеру состояния, соответствующего первому символу правой части данного правила.В клетках состояний, соответствующих символам из правых частей правил, адрес перехода формируется только в том случае, если для этого состояния не установлен флажок r (в том случае если флажок r установлен, переход осуществляется по адресу, снимаемому со стека возвратов). Если флажок в данном состоянии r установлен, в поле адреса перехода будем заносить значение 0. Особое значение адреса перехода (Stop) формируется для состояния 1. Переход по этому адресу означает останов автомата по окончании восстановления дерева разбора правильного предложения при условии, что стек пуст. В противном случае (стек не пуст) операция Stop означает останов по ошибке.Для состояний, соответствующих терминальным символам, в поле адреса перехода заносится номер состояния, соответствующего следующему символу правила (при используемом способе нумерации состояний он вычисляется как номер текущего состояния плюс единица). Для состояний, соответствующих нетерминальным символам в правых частях правил, в поле адреса перехода заносится номер состояния, приписанного первому такому (одноименному) нетерминалу, но находящемуся в левой части правил.В табл. 4.3. приведены результаты применения этой процедуры преобразования грамматики в управляющую таблицу автомата для грамматики Ga2 (в полях флажков управления значению true сопоставлено 1, значению false – пустая клетка).Этот автомат имеет определенную избыточность. Добавление обозначений пустой цепочки в конец правой части правил 1, 2, 4, 5, 7, 8 и 9 привело к образованию в управляющей таблице состояний, зарезервированных для возможного включения действий в грамматику. Эти состояния с номерами 13, 16, 20, 23, 28, 30 и 32 являются избыточными при решении задачи чистого синтаксического акцепта, т. е. без учета задач нейтрализации ошибок, семантического анализа и генерации кода. Таблица 4.3. N Флажки Переход Множество выбора Действие a s r e 0 1 2 ( i c 1 Stop ► 2 11 ( i c 3 1 14 + 4 17 ) ► 5 18 ( i c 6 1 21 * 7 24 + ) ► 8 1 25 ( 9 1 29 i 10 31 c 11 1 5 ( i c 12 1 3 + ) ► 13 1 0 i c* +( ) ► 14 1 15 + 15 1 2 ( i c 16 1 0 i c* +( ) ► 17 1 0 i c* +( ) ► 18 1 8 ( i c 19 1 6 * + ) ► 20 1 0 i c* +( ) ► 21 1 22 * 22 1 5 ( i c 23 1 0 i c* +( ) ► 24 1 0 i c* +( ) ► 25 1 26 ( 26 1 2 ( i c 27 1 28 ) 28 1 0 i c* +( ) ► 29 1 30 i 30 1 0 i c* +( ) ► 31 1 32 c 32 1 0 ic* +( ) ► Если для этих состояний при расширении синтаксического акцептора до анализатора так и не будут определены действия, то они легко могут быть удалены из управляющей таблицы. Программная модель автомата с несколькими состояниями и стековой памятью должна реализовывать следующий алгоритм.Шаг 1. Запуск и инициализация. Очистить стек, прочитать первый символ входной цепочки, установить в качестве текущего состояние 0 и перейти к шагу 2.Шаг 2. Проверить, принадлежит ли очередной символ множеству выбора текущего состояния. Если да, то перейти к шагу 3, иначе – к шагу 6.Шаг 3. Если в клетке текущего состояния установлен флажок a, то прочитать следующий символ входной цепочки.Шаг 4. Если в клетке текущего состояния установлен флажок s, то поместить в стек номер текущего состояния, увеличенный на единицу.Шаг 5. Определение номера следующего состояния. Для этого прежде всего проверяется значение флажка r текущего состояния.Шаг 5.1. Если флажок r установлен, то:Шаг 5.1.1. Если стек не пуст, снять с верхушки стека номер состояния, установить его в качестве текущего и перейти к шагу 2;Шаг 5.1.2. Если стек пуст – перейти к шагу 7.Шаг 5.2. Если флажок r не установлен, то:Шаг 5.2.1. Если текущим является состояние 1:Шаг 5.2.1.1. Если стек пуст, то перейти к шагу 8.Шаг 5.2.1.2. Если стек не пуст, перейти к шагу 7.Шаг 5.2.2. Если текущим является любое другое состояние, то взять номер состояния из поля адреса перехода клетки текущего состояния. Установить в качестве текущего состояние с этим номером и вернуться к шагу 2.Шаг 6. Если в клетке текущего состояния установлен флажок e, то установить в качестве текущего следующее состояние (его номер вычисляется, как номер текущего состояния плюс единица) и вернуться к шагу 2, иначе – перейти к шагу 7.Шаг 7. Останов по ошибке.Шаг 8. Останов по окончании разбора правильного предложения. Построение парсера, как совокупности функций нисходящего рекурсивного восстановления дерева разбора. Пакет ВебТрансБилдер предоставляет возможность преобразования LL(1)-грамматики в программный код, содержащий совокупность функций нисходящего рекурсивного восстановления дерева разбора. Для каждого нетерминала грамматики создается функция, которая: поочередно проверяет принадлежность текущего терминала из предложения множеству выбора каждого правила; при положительном результате проверки «реализует» правую часть правила, двигаясь по ее символам слева направо и: вызывая соответствующие функции парсера (возможно и сама себя), если очередной символ – это нетерминал; сравнивая символ из правила с текущим терминалом, если это терминал и: вызывая лексический анализатор для чтения следующего терминала из предложения при совпадении символов; возвращая значение false (ложь) при несовпадении; возвращая значение true (истина), если был обработан последний символ правой части правила (или правая часть пуста); возвращает значение false (ложь), если не было найдено ни одного подходящего правила. Детально способ преобразования LL(1)-грамматики в программный код описан в [1-5]. Порядок выполнения работы (рекомендуется использовать в качестве примера систему правил Samples/Sample4): Используя пакет ВебТрансБилдер: расширить грамматику заданного на курсовую работу языка, разработанную при выполнении работы №3 до полной грамматики языка (или как минимум до грамматики блока операторов с реализацией правил для всех заданных операторов языка согласно варианту курсовой работы); изучить и освоить проверку принадлежности грамматики к классу LL(1) (пункт меню «Показать/Множества выбора правил»); изучить, что такое множества выбора правил и как они формируются; изучить их использование для преобразования грамматики в нисходящий синтаксический анализатор; добиться того, чтобы разработанная грамматика стала принадлежать классу LL(1); при необходимости освоить для этого технологию удаления терминальных символов из множеств выбора правил с использованием токена «

Лабораторная/практическая работа № 5

Лабораторная/практическая работа № 6

Лабораторная/практическая работа № 7

Лабораторная/практическая работа № 8

Литература


  1. Требования к содержанию отчета.

Отчет должен содержать:

  • цель работы;

  • краткое изложение задач семантического анализа;

  • описание структур данных и алгоритмов совокупности действий, разработанных для реализации семантического анализатора по заданному варианту курсовой работы;

  • результаты тестирования разработанного транслятора в виде связанного описания фрагментов ПФЗ и полученных из нее фрагментов псевдокода;

  • выводы и заключение.

  1. Контрольные вопросы

    1. В чем состоят функции контроля структуры программы?

    2. Перечислите известные Вам способы представления типов данных.

    3. Что такое тетрада?

    4. Опишите этапы алгоритма преобразования постфиксной записи в последовательность тетрад.

    5. Перечислите известные Вам способы образования производных типов данных.



Лабораторная/практическая работа № 8


  1. Название работы: «Семантика языков программирования. Типы данных. Виртуальные машины, интерпретирующие псевдокод».

  2. Цели работы: изучение семантических свойств объектов транслируемой программы, методов их выявления и использования, типов данных и методов контроля типов, областей видимости переменных, локальных и нелокальных сред ссылок, способов передачи параметров, приобретение навыков разработки элементов виртуальной машины для интерпретируемого языка.

  3. Основные теоретические сведения:

При реализации виртуальной машины интерпретатора необходимо учитывать множество свойств языка программирования.

    1. Базовые типы данных

Перечень базовых типов и их свойства, как правило, полностью определяются стандартом языка программирования, хотя некоторые детали могут определяться аппаратной платформой и конкретной реализацией транслятора. Количество базовых типов данных в любом языке программирования обычно очень ограничено. Так, например, в языке С существует всего три базовых типа данных – символьный (char), целый (int) и вещественный (float). Для целого типа определены три разновидности, не обязательно различающиеся по диапазону значений: короткий (short), обычный и длинный (long), для вещественного – две разновидности: обычный и двойной точности (double). Кроме того, символьные и целые значения могут быть либо знаковыми (signed, по умолчанию), либо беззнаковыми (unsigned).

В языке Java к аналогичному (только нет беззнаковых) набору базовых типов данных добавлен булевский тип (boolean). В языке Pascal также существует булевский тип данных, но целые и вещественные типы не имеют разновидностей по размеру значений.

Под типом элемента данных принято понимать:

  • с одной стороны, его внутреннее устройство (диапазон возможных значений, размер области памяти в минимально адресуемых единицах, необходимой для хранения значения, формат значения, т. е. назначение каждой двоичной цифры – бита и т. д.);

  • с другой стороны, перечень и смысл операций, которые могут применяться к значениям этого типа.

Большинство деталей внутреннего устройства данных (за исключением диапазона значений) обычно скрывается от программистов. Для построения транслятора (и понимания принципов его работы), наоборот, очень важны детали внутреннего строения данных. Именно с ними имеют дело процессы семантического анализа, генерации объектного кода и его оптимизации.



Внутреннее устройство объектов может быть как очень простым, так и чрезвычайно сложным. Например, объект символьного типа в языке С мож но считать одним из простейших. Внутреннее представление значения такого объекта занимает минимальный адресуемый участок памяти – один байт. Диапазон значений внутреннего представления – от 0 до 255 (в десятичной системе счисления). В операциях символьное значение рассматривается как целое число без знака.

Другой пример – функция в языке С. Функция есть программная единица, возвращающая значение некоторого типа (на данный момент будем считать, что функция возвращает значение одного из базовых типов). Имя функции может быть использовано в выражении, следовательно, она является объектом программы. Каждая конкретная функция имеет свой собственный уникальный тип, внутреннее устройство которого в самых общих чертах можно описать следующим образом.

Функция – это как минимум одна область последовательно расположенных элементов памяти, содержащая исполняемые команды и отдельно расположенные области памяти для хранения адресов связи с другими функциями, значений аргументов, значений локальных переменных, значения результата. Имена функций (с фактическими аргументами) могут быть использованы в выражениях таким образом, что может возникнуть впечатление, будто к ним (функциям) применимы арифметические или иные операции. На самом деле эти операции применяются к значениям, возвращаемым объектом типа «функция». К самим же функциям, как к объектам, применима только операция вызова, т. е. операция передачи управления.

Информация о внутреннем устройстве объектов программы нужна транслятору для определения того, как именно должны использоваться значения объектов. Пусть, например, имеется выражение x + y.

Вычисление значения этого выражения может протекать по-разному не только для разных сочетаний типов данных в одном языке программирования, но и в том случае, если типы данных объектов x и y одинаковы, но это выражение появляется в программах на разных языках программирования. Например, если объекты x и y имеют символьный тип, то в программе на языке С/С++ будет выполняться арифметическое сложение численных эквивалентов текущих значений символов с образованием целого значения в качестве результата, а в программе на языке Object Pascal – конкатенация этих символов с образованием значения типа «массив символов» или «строка». Таким образом, результатом вычисления выражения
'0'+'A' в программе на языке С будет целое беззнаковое число 113 (которое можно рассматривать и как символ 'q'), а в программе на языке Object Pascal – строка "0A" (последовательность из двух символов '0' и 'A').

Однако знания только внутреннего строения типов данных недостаточно, для того чтобы проверять правильность программы, в которой используются объекты этих типов. Для каждого типа должен быть известен перечень операций, применимых к его значениям. Так, например, к объектам символьного типа в языке С могут применяться операции присваивания, сравнения, арифметические операции, логические (битовые) операции, но не может применяться операция передачи управления на этот символ. В языке Pascal к данным символьного типа не могут применяться битовые и арифметические операции, а могут только операции присваивания и сравнения. К функции, наоборот, может быть применена операция передачи управления (с предварительным сохранением адреса возврата), но не может применяться ни одна арифметическая, логическая или сравнивающая операция (как уже было сказано, не следует путать операции с функцией как объектом программы и операции со значением, возвращаемым ею в результате вызова).

Базовые типы данных определены стандартом языка во всех деталях, т. е. разработчику транслятора заранее известно их внутреннее устройство, множество применимых к ним операций, в том числе операций преобразования в другие базовые типы, преобразования из внешнего во внутреннее представление, и наоборот, из внутреннего во внешнее. Базовыми типами данных могут обладать так называемые простые переменные и константы.

Константы бывают именованными и литеральными.

Именованные константы с точки зрения решения задач семантического анализа почти полностью эквивалентны переменным. Единственное отличие состоит в том, что к именованной константе неприменима операция присваивания. Способы объявления именованных констант в разных языках различны.

Литеральными константами (или просто литералами) называются объекты, не имеющие имени и объявленные просто в виде их значений прямо в тексте инструкции.

С литеральными константами связано несколько проблем, которые могут разными способами решаться разработчиками трансляторов:

  1. Являются ли несколько текстуально одинаковых литеральных констант, встречающихся в разных точках текста программы, одним объектом времени исполнения, или каждая такая константа есть самостоятельный объект, занимающий собственный элемент памяти?

  2. В какой момент времени (на каком этапе трансляции) должно осуществляться отнесение каждой встреченной в тексте программы константы к тому или иному типу данных и соответственно преобразование литерала (текстового представления константы) во внутреннее представление, т. е. значение?


Единых ответов на эти вопросы не существует. От того, как разработчик языка отвечает на них, существенно зависят свойства языка, а также характеристики программ на нем. Проиллюстрируем существо этих проблем на небольшом примере. Пусть в программе на языке С встречается такая последовательность операторов, показанная на рис. 8.1.

  1. int val;

  2. double values[10];

  3. double * pointer;

  4. val=1;

  5. pointer=values;

  6. *pointer=1;

  7. pointer+=1;

Рис. 8.1. Литеральные константы в языке С

В этой последовательности появляются три литеральные константы с идентичным текстовым представлением 1. Казалось бы, после обработки текста лексическим анализатором, обнаружившим три вхождения целочисленной константы 1, транслятор должен каждое из этих вхождений связать с одним и тем же объектом.

Однако семантические правила языка С таковы, что в операторе присваивания

    1. val=1;

должно использоваться целое значение 1, результатом выполнения оператора

    1. *pointer=1;

в конечном итоге должна быть запись вещественного значения 1.0 (заметим, что внутреннее двоичное представление вещественной единицы может не совпадать с представлением целой единицы) в самый первый элемент массива values, а фактическое значение литеральной константы 1 в строке (7) зависит от реализации транслятора (и от аппаратной платформы) и может оказаться равным 8 или 10.

Этот простой пример показывает, что (по крайней мере, в некоторых языках) установление типа данных литеральных констант и формирование внутреннего представления их значений не может выполняться на этапах лексического или синтаксического анализа. Оно должно выполняться семантическим анализатором позднее.

    1. Производные типы данных

Производные типы конструируются программистом по правилам, определенным стандартом языка. Для разных языков эти правила различаются.

В силу того, что возможность и степень удобства конструирования в точности таких типов, которые необходимы для решения каждой конкретной задачи, чрезвычайно важны при программировании, именно средства, предоставляемые языком для этих целей, во многом определяют как потенциальную применимость языка, так и его популярность. В зависимости от того, что понимается под типом данных, существует несколько принципиально различающихся возможностей для определения производных типов (здесь перечислены только некоторые, наиболее часто употребляемые способы).