Файл: Ersoy O.K. Diffraction, Fourier optics, and imaging (Wiley, 2006)(ISBN 0471238163)(427s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 904

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

BPM BASED ON FINITE DIFFERENCES

363

factored out, the slowly varying field can be represented numerically along the longitudinal grid, with spacing which can be many orders of magnitude larger than the wavelength. This effect makes the BPM much more efficient than purely finite difference based techniques, which would require grid spacing of the order of one tenth the wavelength. Secondly, eliminating the second order derivative term in z enables the problem to be treated as a first order initial value problem instead of a second order boundary value problem. A second order boundary value problem usually requires iteration or eigenvalue analysis whereas the first order initial value problem can be solved by simple integration in the z-direction. This effect similarly decreases the computational complexity to a large extent as compared to full numerical solution of the Helmholtz equation.

However, there are also prices paid for the reduction of computational complexity. The slow envelope approximation assumes the field propagation is primarily along the z-axis (i.e., the paraxial direction), and it also limits the size of refractive index variations. Removing the second derivative in the approximation also eliminates the backward traveling wave solutions. So reflection-based devices are not covered by this approach. However, these issues can be resolved by reformulating the approximations. Extensions such as wide-angle BPM and bidirectional BPM for this purpose will be discussed later.

The FFT-based numerical method for the solution of Eq. (12.3-5) was discussed in Section 12.4. Another approach called FD-BPM is based on the method of finite differences, especially using the Crank–Nicholson method [Yevick, 1989]. Sometimes the finite difference method gives more accurate results [Yevick, 1989], [Yevick, 1990]. It can also use larger longitudinal step size to ease the computational complexity without compromising accuracy [Scarmozzino].

In the finite-difference method, the field is represented by discrete points on a grid in transverse planes, perpendicular to the longitudinal or z-direction in equal intervals along the z-direction. Once the input field is known, say, at z ¼ 0, the field on the next transverse plane is calculated. In this way, wave propagation is calculated one step at a time along the z-direction through the domain of interest. The method will be illustrated in 2-D. Extension to 3-D is straightforward.

Let uni denote the field at a transverse grid point i and a longitudinal point indexed by n. Also assume the grid points and planes are equally spaced by x and z apart, respectively. In the Crank–Nicholson (C-N) method, Eq. (12.3-5) is represented at a fictitious midplane between the known plane n and the unknown plane n þ 1. This is shown in Figure 20.1.

The representation of the first order and second order derivatives on the midplane in the C-N method is as follows:

 

 

u

 

 

 

 

 

 

 

 

 

 

 

unþ1

 

un

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d i

 

 

 

 

 

 

 

 

 

 

 

i

i

 

 

 

20:2-9

 

 

dz

z

 

z

 

n

 

1=2

¼

 

 

 

 

ð

Þ

 

 

 

 

¼

 

 

ð

 

þ

 

Þ

 

 

 

 

 

 

 

 

 

 

2u

 

 

 

 

 

 

 

 

 

2unþ1

 

2un

 

 

 

 

d

 

i

 

 

 

 

 

 

 

 

 

¼

d i

 

d i

ð

20:2-10

Þ

dx2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z n

 

1=2

 

2 z2

 

 

 

z

¼

 

 

 

 

 

 

 

 

 

 

 

 

ð þ

 

Þ

 

 

 

 

 

 

 

 


364

NUMERICAL METHODS FOR RIGOROUS DIFFRACTION THEORY

Figure 20.1. The sampling points in the Crank–Nicholson method.

where znþ1=2 ¼ zn þ z=2, and d2 represents the second order difference operator given by

d2ui ¼ uiþ1 þ ui 1 2ui

ð20:2-11Þ

With these approximations, Eq. (20.2-8) becomes

 

 

 

 

unþ1

 

un

 

 

j

 

d

2

 

 

 

 

 

k2

 

unþ1

þ

un

i

 

i

 

 

 

 

 

 

k x

; z

 

 

 

i

 

i

 

z

 

¼

2k x2

þ ð

nþ1=2

Þ

Þ

 

2

 

 

 

ð i

 

 

 

 

Equation (20.2-12) can be written as a tridiagonal matrix [Scarmozzino]

aiuni þ11 þ biuni þ1 þ ciuniþþ11 ¼ di

ð20:2-12Þ

equation as

ð20:2-13Þ

This equation is solved for the unknowns uni þ1 at the (n þ 1)th layer along the z-direction. Because of its tridiagonal nature, the solution can be found rapidly in O(N) operations, N being the number of grid points along the x-direction.

At the boundary points i ¼ 0 and N, appropriate boundary conditions must be used. The transparent boundary condition is commonly preferred [Hadley, 90], [Hadley, 92].

20.3WIDE ANGLE BPM

The paraxial approximation used above allows BPM to be used in applications with paraxial waves and small variations of index of refraction. In order to extend the method, it is necessary to reintroduce the skipped second derivative term into Eq. (20.2-8) and thereby start with Eq. (20.2-7), which can be written as

@2U

@U @2U @2U

 

2

2

 

 

 

þ 2ik

 

þ

 

þ

 

þ ðk

 

k

ÞU ¼ 0

ð20:3-1Þ

@z2

@z

@x2

@y2

 


WIDE ANGLE BPM

365

Let D represent @=@z, and D2 represent @2=@2z. Equation (20.3-1) is written as

 

@2

 

@2

 

 

D2U þ 2ikDU

þ

 

þ

 

þ ðk2 k2Þ U ¼ 0

ð20:3-2Þ

@x2

@y2

It is valid to consider this equation as an algebraic equation in D. Solving it for D yields

where

 

 

 

¼

 

½

 

 

 

&

ð

 

Þ

 

 

 

 

 

 

p

 

 

 

 

 

20:3-3

 

 

 

D jk 1 þ P 1

 

 

 

 

1

 

@2

 

 

@2

 

 

 

 

 

 

P ¼

 

 

 

 

þ

 

þ ðk2 k2Þ

ð20:3-4Þ

k2

@x2

@y2

P and D represent operators on U. Thus, Eq. (20.3-2) becomes [Hadley]

 

 

 

 

 

 

 

¼

 

ð

 

Þ

ð

 

Þ

 

@U

 

 

p

 

 

 

 

 

 

 

 

 

 

@z

 

 

jk 1 þ P 1 U

 

20:3-5

 

This equation only gives the forward propagation solution. The backward solution can be found by changing the sign of the square root term. Either solution is exact.

To be able to solve for U in Eq. (20.3-5), it is necessary to expand the term p

1 þ P. The Paˆde´ expansion yields the best accuracy with the fewest terms of expansion for this purpose [Hadley]. The Paˆde´ approximation with order (m,n) is a rational function of the form

M

akxk

 

k¼0

 

RðxÞ ¼

PN

ð20:3-6Þ

 

P

bkxk

 

1 þ

 

k¼1

 

 

ˆ

´

 

 

 

Table 20.1 shows the low-order Pade approximants for the term k½

Using the Paˆde´ approximation, Eq. (20.3-5) is written as

@U

¼

jk

NmðPÞ

U

 

 

 

 

@z

 

DnðPÞ

p

1 þ P 1&.

ð20:3-7Þ

where NmðPÞ and DnðPÞ are polynomials in P corresponding to the Paˆde´ approximant of order (m,n).

As the Paˆde´ order increases, the accuracy of the solution improves. The (1,1) order Paˆde´ approximation is sufficiently accurate up to 30 degrees while the (3,3) Paˆde´ approximation is equivalent to the 15th order Taylor expansion of the exact square root term in Eq. (20.3-5).

The wide angle BPM is commonly used in applications in which wide angles are necessary such as in the design of AWGs discussed in Chapter 19. For example,


366

 

NUMERICAL METHODS FOR RIGOROUS DIFFRACTION THEORY

 

Table 20.1. Low-order Paˆde´ approximants for

 

Order

½

p

 

k½p1 þ P 1&

 

 

 

 

1 þ P 1&.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the term k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1,0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1,1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 þ

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4k2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

P2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

þ

 

 

 

 

 

 

 

 

 

 

 

 

 

(2,2)

 

 

 

 

 

 

2k

 

 

4k3

 

 

 

 

 

1 þ

 

3P

 

þ

 

 

P2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4k2

16k4

 

 

 

 

 

 

 

 

 

 

P

 

þ

 

 

 

P2

 

þ

 

 

3P2

 

(3,3)

 

 

 

 

2k

 

 

2k3

 

32k5

 

 

 

 

 

 

 

 

 

 

5P

 

 

 

 

 

3P2

 

 

 

P3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 þ

 

 

þ

 

þ

 

 

 

 

 

 

 

 

 

4k2

 

8k4

64k6

Figure 19.2 shows the layout of the waveguides with wide angles of bending to accommodate the length variations. Figure 20.2 shows the output intensities in a 200-channel AWG design computed with the wide-angle BPM using the RSoft software called BeamPROP.

Figure 20.2. A close-up view of the output channel intensities in a 200-channel phasar design using wide-angle BPM [Lu, et al., 2003].


FINITE DIFFERENCES

367

20.4FINITE DIFFERENCES

In the next section, the finite difference time domain technique is discussed. This method is based on the finite difference approximations of the first and second derivatives. They are discussed below.

The Taylor series expansion of uðx;tnÞ at xi þ x about the point xi for a fixed time tn is given by [Kuhl, Ersoy]

 

 

 

@u

 

 

x2

 

@2u

 

x3

 

@3u

 

x4 @4u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

þ x

 

 

þ

 

 

 

 

6

 

 

 

 

 

 

20

:4-1

 

uðxi þ x; tnÞjtn ¼ u

xi;tn

@x

xi;tn

2

 

@x2

xi;tnþ

 

@x3

xi;tnþ

24 @x4

xi;tn

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð

 

 

The last term is an error term, with x1 being a point in the interval ðxi; xi þ xÞ. Expansion at the point xi x for fixed time tn is similarly given by

 

 

 

 

 

@u

 

 

 

 

x2

 

@2u

 

 

 

 

 

 

x3

@3u

 

 

x4 @4u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4-2

 

 

 

x

 

 

þ

2

 

 

 

 

 

6

 

 

 

 

 

 

 

20:

 

uðxi x; tnÞ

tn

¼ u

xi;tn

@x

xi;tn

 

@x2

xi;tn

 

@x3

xi;tnþ

24 @x4

x2

;tn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð

 

 

 

Þ

where x2 is in the interval ðxi x; xiÞ. Adding the two expansions gives

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

@2u

 

 

 

 

 

x4

@4u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uðxi þ xÞ þ uðxi xÞ ¼ 2u

xi;tn

þ x2

@x2

xi;tn

þ

12

 

@x4

x3;tn

ð20:4-3Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where x3 lies in the interval ðxi x; xi þ xÞ. Rearranging the above expression yields

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð

Þ

 

 

 

 

 

 

 

 

tn

h

i

@2u

 

¼ "

u

x

i þ

x

Þ

2u x

 

u

x

 

x

Þ# þO

ð xÞ2

ð20:4-4Þ

 

@x2

xi;tn

ð

 

 

 

ðx i2Þ þ

ð

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eq. (20.4-4) can be written as

 

 

 

 

 

 

 

 

 

 

h

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð

Þ

 

 

 

 

 

 

 

 

 

 

 

@

2u

 

 

 

 

 

un

 

2un un

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

@x2

xi;tn

 

¼

iþ1 xi 2þ i 1

þ O ð xÞ2

ð20:4-5Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second partial derivative of u with respect to time is similarly given by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i þ

ð

Þ

 

i

1

 

 

 

h

i

 

 

 

 

 

 

@t2 xi;tn

 

¼

 

 

 

ti

2þ

þ O ð tÞ2

ð20:4-6Þ

 

 

 

 

 

@2u

 

 

 

 

 

un 1

 

2un

 

un