Файл: Ersoy O.K. Diffraction, Fourier optics, and imaging (Wiley, 2006)(ISBN 0471238163)(427s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 901

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

368

NUMERICAL METHODS FOR RIGOROUS DIFFRACTION THEORY

20.5FINITE DIFFERENCE TIME DOMAIN METHOD

The FDTD method is an effective numerical method increasingly used in applications. In this method, the Maxwell’s equations are represented in terms of central-difference equations. The resulting equations are solved in a leapfrog manner. In other words, the electric field is solved at a given instant in time, then the magnetic field is solved at the next instant in time, and the process is repeated iteratively many times.

Consider Eqs. (3.3-14) and (3.3-15) of Chapter 3 for a source-free region (no electric or magnetic current sources) rewritten below for convenience:

 

@D

 

@E

 

 

r H ¼

 

 

¼ e

 

 

 

ð3:3-14Þ

@t

@t

 

 

@B

¼ m

@H

ð3:3-15Þ

r E ¼

 

 

@t

@t

Eq. (3.3-14) shows that the time derivative of the E field is proportional to the Curl of the H field. This means that the new value of the E field can be obtained from the previous value of the E field and the difference in the old value of the H field on either side of the E field point in space.

Equations (3.3-14) and (3.3-15) can be written in terms of the vector components as follows:

 

 

 

 

 

 

 

 

 

@Hx

1

 

@Ey

 

@Ez

r0Hx

 

 

@t

¼

m

 

@z

 

@y

ð20:5-1Þ

 

 

 

 

 

 

 

 

 

@Hy

1

 

@Ez

 

@Ex

r0Hy

 

 

@t

¼

m

 

@x

 

@z

ð20:5-2Þ

 

 

 

 

 

 

 

 

 

@Hz

1

 

@Ex

 

@Ey

r0Hz

 

 

@t

¼

m

 

@y

 

@x

ð20:5-3Þ

 

 

 

 

 

 

 

 

 

 

@Ex

1

 

@Hz

 

@Hy

sEx

 

 

@t

¼

e

 

@y

 

@z

ð20:5-4Þ

 

 

 

 

 

 

 

 

 

 

 

@Ey

1

 

@Hx

 

@Hz

sEy

 

 

@t

¼

e

 

@z

 

@x

ð20:5-5Þ

 

 

 

 

 

 

 

 

 

 

 

@Ez

1

 

@Hy

 

@Hx

sEz

 

 

@t

¼

e

 

@x

 

@y

ð20:5-6Þ

These equations are next represented in terms of finite differences, using the Yee algorithm discussed below.

20.5.1Yee’s Algorithm

Yee’s algorithm solves Maxwell’s curl equations by using a set of finite-difference equations [Yee]. Using finite differences, each electric field component in 3-D is


FINITE DIFFERENCE TIME DOMAIN METHOD

369

Figure 20.3. Electric and magnetic field vectors in a Yee cell [Yee].

surrounded by four circulating magnetic field components, and every magnetic field component is surrounded by four circulating electric field components as shown in Figure 20.3. The electric and magnetic field components are also centered in time in a leapfrog arrangement. This means all the electric components are computed and stored for a particular time using previously stored magnetic components. Then, all the magnetic components are determined using the previous electric field components [Kuhl, Ersoy].

With respect to the Yee cell, discretization is done as follows:

½i; j; k& ¼ ði x; j y; k zÞ where x; y; and z are the space increments in the x, y, and z directions, respectively, and i, j, k are integers.

tn ¼ n t

uði x; j y; k z; n tÞ ¼ uni;j;k

Yee’s centered finite-difference expression for the first partial space derivative of u in the x-direction, evaluated at time tn ¼ n t is given by [Yee]

@u

 

uin

1=2;j;k uin

1=2; j;k

 

2

 

 

ði x; j y; k z; n tÞ ¼

þ

x

 

 

þ Ohð xÞ

i

ð20:5-7Þ

@x

 

 

 

It is observed that the data a distance x=2 away from the point in question is used, similarly to the Crank–Nicholson method. The first partial derivative of u with respect to time for a particular space point is also given by

@u

 

uin;þj;k1=2 uin; j;k1=2

 

2

 

 

ði x; j y; k z; n tÞ ¼

 

þ Ohð tÞ

i

ð20:5-8Þ

@t

t


2ei; j;k

370

NUMERICAL METHODS FOR RIGOROUS DIFFRACTION THEORY

Substituting in the space and time derivatives for the point ði; j; kÞ at time n in Eq. (20.5-4) yields

n 1 2

þ

n 1 2

0

Hzjin; jþ1=2;k Hzjin; j 1=2;k

 

 

 

1

 

 

 

Exji;þj;k=

Exji; j;k=

 

1

 

y

 

 

 

ð

20:5-9

Þ

 

t

 

¼ ei; j;k

 

Hyjin; j;kþ1=2 Hyjin; j;k 1=2

 

 

 

 

 

@

 

 

 

 

A

 

 

 

B

 

 

j

n

C

 

 

 

 

 

 

B

z

 

C

 

 

 

 

 

 

 

 

B

 

 

 

si; j;kEx

i; j;k C

 

 

 

All the terms on the right side of this equation are evaluated at time step n. All the magnetic field components needed at time n are known. Only the values of Ex up to time n 1=2 are stored. For a region without loss, this term is zero. If si;j;k is nonzero, then Ex can be estimated as [Yee]

n

 

Exjin;þj;k1=2 þ Exjin; j;k1=2

ð20:5-10Þ

Exji; j;k

¼

 

2

which is the average of the known value of Ex at time n 1=2 and the unknown value at time n þ 1=2. Using Eq. (20.5-10) in Eq. (20.5-9) yields

 

 

 

 

 

 

 

Hz

in; jþ1=2;k Hzjin; j 1=2;k

 

 

 

 

 

 

 

 

0

 

j

 

 

 

 

 

 

 

 

nþ1=2

 

n 1=2

 

t

 

 

 

 

y

2

 

 

Ex i; j;k

Ex i; j;k

 

 

B

 

 

 

n 1 2

 

n 1 2

j

 

þ j

 

¼ ei; j;k

@

 

 

 

Ex

i;þj;k=

 

Ex

i; j;k=

 

 

B

 

 

 

þ

 

 

 

 

 

 

B

 

si; j;k

j

 

 

j

 

 

 

 

 

 

 

 

 

 

 

 

n 1 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

results in

Collecting like terms and solving for Ex i;þj;k

Hy

in; j;kþ1=2 Hyjin; j; k 1=2

j

z

1

 

 

 

C

 

 

 

C

 

 

 

C

 

 

 

A

 

 

ð20:5-11Þ

 

 

 

 

k t

 

 

 

0

1

si; j;

1Ex

 

Ex nþ1=2

2ei; j;k

n 1=2

 

ji; j;k

B

þ

si; j;k t

C

ji; j;k

@

 

 

A

 

¼ B1

 

 

C

 

 

 

 

 

 

t

 

Hz

in; jþ1=2;k Hzjin; j 1=2;k

 

0

 

 

 

 

10

j

 

 

 

 

 

1

 

 

ei; j;k

 

 

 

 

 

 

 

 

 

 

y

 

 

 

B

 

 

 

 

 

CB

 

 

 

 

 

 

 

C

 

 

þ

 

si; j;k t

 

 

 

 

z

 

 

 

@

 

 

AB

 

 

 

 

 

 

C

 

 

 

 

 

@

 

 

 

 

 

 

 

A

þ

1

 

 

 

B

Hy

in; j;k

1=2

 

Hy

in; j;k

1=2 C

 

B

 

 

2ei; j;k

C

 

j

þ

 

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð20:5-12Þ

All the other unknown field components can be similarly evaluated as

 

 

 

 

si; j;k t

 

 

 

 

 

 

 

 

 

 

 

 

0

Hx

in; j;kþ1=2 Hxjin; j;k 1=2

1

 

 

 

1

 

 

 

 

 

 

 

 

t

 

 

 

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

2ei; j;k

 

 

 

 

 

 

 

 

 

 

 

n 1=2

 

 

 

 

n 1=2

 

 

 

 

ei; j;k

 

 

 

 

Ey i;þj;k

 

B

 

 

C

 

i;j;k

 

B

 

 

 

 

 

CB

 

 

j þ

j

 

 

C

 

þ 2ei; j;k

 

 

 

þ

 

2ei; j;k

 

 

 

0

 

si; j;k

t1Ey

 

0

 

 

si; j;k

t1

 

 

 

n

x

n

 

C

 

 

@

 

 

A

 

 

 

@

 

 

 

AB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

@

 

 

 

 

 

 

 

A

j

¼

 

1

 

 

 

j

 

þ

 

1

 

 

 

B Hz i 1=2; j;k

 

Hz i 1=2; j;k C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð20:5-13Þ


2mi;j;k

COMPUTER EXPERIMENTS

 

 

 

 

k t

 

 

 

 

 

0

1

si; j;

 

1Ez

 

Ez nþ1=2

 

2ei; j;k

 

n 1=2

 

 

ji; j;k

¼

@

si; j;k t

A

ji; j;k

 

 

B1

 

C

 

 

 

B þ

2ei; j;k

C

 

0

 

t

 

 

ei; j;k

@

 

si; j;k t

þ B1

þ

B

2ei; j;k

 

 

 

 

 

 

371

 

Hy

in

1=2; j;k Hyjin

1=2; j;k

10

 

j

þ

x

 

 

1

 

 

 

 

 

 

 

B

 

Hxjin; jþ1=2;k Hxjin; j 1=2;kC

CB

 

 

 

y

 

 

 

C

CB

 

 

 

 

C

A@

 

 

 

 

 

 

 

A

ð20:5-14Þ

 

 

 

 

 

0

t

 

 

 

 

 

 

 

t

10

Ey

nþ1=2

 

 

Ey

nþ1=2

 

1

 

 

 

 

 

ri; j;k

 

 

 

 

 

 

 

 

 

i; j;k

1=2

 

ji; j;k

1=2

 

 

01

 

1

 

 

0

 

 

 

 

 

 

j

þ

 

 

 

 

 

 

 

n 1

 

2mi; j;k

n

 

 

 

mi; j;k

 

 

 

 

 

z

 

 

 

 

Hxji;þj;k

¼

 

 

 

 

 

Hxji; j;k

þ

 

 

 

 

 

 

B

 

 

 

 

 

 

C

B1

 

ri0; j;k t

C

B1

 

 

ri0; j;k t

 

Ez

nþ1=2

 

 

Ez nþ1=2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CB

 

 

ji; j

 

1=2;k

ji; j

 

1=2;k

C

 

 

B

þ

2mi; j;k

C

 

 

B

þ 2mi; j;k

CB

 

 

þ

 

y

 

 

C

 

 

B

 

 

 

C

 

 

B

 

 

 

 

CB

 

 

 

 

 

 

 

C

 

 

@

 

 

 

 

A

 

 

@

 

 

 

 

 

A@

 

 

 

 

 

 

 

 

 

 

A

ð20:5-15Þ

Hyjni;þj;1k

Hzjni;þj;1k

 

 

 

r0

k t

 

 

 

01

i; j;

1

 

 

2mi; j;k

n

¼

B

 

 

 

CHyji; j;k

1

ri0; j;k t

 

 

 

 

 

þ 2

 

 

B

mi; j;k

C

 

 

B

 

 

C

 

 

@

 

 

 

 

A

 

 

 

 

r0

k t

 

 

 

01

i; j;

1

 

 

2mi; j;k

n

¼

B

 

 

CHzji; j;k

1

ri0; j;k t

 

B

þ

 

C

 

 

B

 

 

 

C

 

 

@

 

 

 

 

A

 

 

0

 

 

mi; j;k

 

10

 

 

j

nþ1=2

x

nþ1=2

 

 

1

 

 

 

 

 

 

þ

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

Ez

i 1=2; j;k

 

Ezji

 

1=2; j;k

 

 

B

 

 

 

 

 

CB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

þ

@

 

 

ri0; j;k t

B

 

 

Ex nþ1=2

 

 

Ex

 

nþ1=2

C

 

 

 

 

 

 

A@

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

B

þ

2mi; j;k

 

CB

 

 

 

 

 

 

þ

 

 

 

 

 

 

 

 

1=2

 

C

 

B1

 

 

 

 

CB

 

 

 

 

ji; j;k

1=2 ji; j;k

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð20:5-16Þ

 

 

 

 

 

 

10

 

 

 

nþ1=2

 

 

 

nþ1=2

 

 

1

 

 

 

 

 

 

Ex

i; j

1=2;k

 

Exji; j 1=2;k

 

0

 

 

t

 

 

 

j

 

þ

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mi; j;k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

CB

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

C

þ

@

 

 

ri0; j;k t

 

B

 

 

E nþ1=2

 

 

E

 

 

nþ1=2

C

 

 

þ 2mi; j;k

A@

 

 

 

 

j

þ

 

 

 

 

 

j

 

 

 

 

A

 

B

CB

 

 

 

 

 

 

 

 

 

 

 

C

 

B1

 

 

 

 

CB

 

 

 

y

 

i 1=2; j;k

 

 

y

 

i

1=2; j;k

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð20:5-17Þ

20.6COMPUTER EXPERIMENTS

The software package XFDTD by Remcom was used in the computer experiments [Kuhl, Ersoy]. In this environment, the region of interest is a cubical mesh, where each mesh edge can be given different material properties in order to simulate a specified geometry. For each cell, the material may be a perfect conductor or free space, or may be defined in other ways. The sampling in space has sub-wavelength format, typically in the range of 1/10–1/30 of a wavelength. The region of interest is excited by either a plane wave or multiple voltage sources. The excitation may be pulsed or sinusoidal. The duration of the simulation is set by specifying the number of desired time steps.