Файл: Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 905

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Ref. p. 131]

3.1 Linear optics

95

 

 

 

Incident beam

 

Low-pass

Filtered beam

Lens

filter

Lens

High

 

 

 

 

frequency

 

f

f

f

f

Fig. 3.1.16. Low-pass filtering of a laser beam with a four-f -setup [92Lug]. The mask is a low-pass filter, which transmits a zero mode only and suppresses the higher modes. The incident beam can also be modified by a transmission element which changes amplitude and phase.

Di ractive optical elements influence the propagation of light with help of amplitudeand/or phasechanging microstructures whose dimensions are of the order of the wavelength mostly. They extend the classical means of optical design. References: [67Loh, 84Sch, 97Tur, 00Tur, 00Mey, 01Jah].

Example 3.1.6.

Gratings generated by mechanical or interference ruling [69Str, 67Rud] on either plane or concave substrates for the combination of dispersive properties with imaging [82Hut, 87Chr].

Fresnel’s zone plates acting as microoptic lenses of [97Her].

Mode transformation optics (“modane”) for transformation and filtering of modes of a laser [94Soi].

Generation of theoretical ideal wavefronts for optical testing with interferometrical methods [95Bas, Vol. II, Chap. 31].

Mode-discriminating and emission-forming elements in resonators [94Leg, 97Leg, 99Zei].

For pure imaging applications, refracting surfaces are still preferred, even in the micro-range [97Her]. Tasks with special dispersion requirements and special optical field transformations are the main application of the di ractive elements with increasing share.

The technology of dispersion compensation and weight reduction in large optical systems by special di ractive elements is partially solved, now.

3.1.5 Optical materials

Medium with absorption:

 

 

 

 

εˆr = nˆ2

 

 

 

(3.1.56)

with

 

 

 

 

εˆr : complex relative dielectric constant (or tensor),

 

nˆ : complex refractive index,

 

 

 

 

weakly absorbing isotropic medium:

 

 

 

 

α k0 : nˆ = n − i ke = n − i n κ = n − i

α

,

 

(3.1.57)

 

 

2 k0

damped plane wave (unity field amplitude):

 

n − i 2 k0

z

exp {−i kz} = exp {−i k0(n − i κ) z} exp i k0

 

 

 

 

 

α

 

= exp i k0z −

α

 

 

 

 

 

z ,

 

 

 

(3.1.58)

2

 

 

 

Landolt-B¨ornstein

New Series VIII/1A1


96

3.1.5 Optical materials

[Ref. p. 131

 

 

 

intensity:

 

 

I(z) = I(0) exp {−α z}

(Lambert-Beer-Bouguer’s law ) ,

(3.1.59)

amplification in pumped media:

 

I(z) = I(0) exp {g z}

 

(3.1.60)

with

α [m1] : (linear) absorption constant (standard definition [95Bas, Vol. II, Chap. 35],

[99Bor, 91Sal, 96Yar, 05Hod]) or extinction constant or attenuation coe cient, g [m1] : gain,

ke [m1] : [88Yeh, 95Bas] (or κ [m1] : [99Bor, 04Ber]) extinction coe cient, attenuation index.

Di erent convention after (3.1.6): α, g, ke and κ are defined with other signs, for example nˆ = n (1 + i κ) if the other time separation (1st convention) is used [99Bor, Chap. 13], [95Bas, Vol. I, Chap. 9].

Measurement of α : see [85Koh, 04Ber, 82Bru], [90Roe, p. 34], [95Bas, Vol. II, Chap. 35].

3.1.5.1 Dielectric media

In Fig. 3.1.17 the realand imaginary part of the refractive index in the vicinity of a resonance in the UV are shown.

Single-resonance model for low-density media [99Bor, 96Ped]:

N e2

nˆ = n − i ke = 1 + 2 ε0m (ω02 − ω2 + i γ ω)

= 1 +

N e2γ

 

ω02 − ω2

 

 

 

 

i

N e2γ ω

 

(3.1.61)

2 ε0m [(ω02

 

ω2)2 + γ2

ω2]

2 ε0m [(ω02 ω2)2 + γ2 ω2

 

 

 

 

]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with

e = 1.602 × 1019 C : elementary charge, m = 9.109 × 1031 kg : mass of the electron,

ω = 2 π ν [s1] : circular frequency of the light,

ω0 [s1] : circular resonant frequency of the electron,

n

 

part

k

real

part

Refractiveindex,

imaginary

 

 

UV-

Visible

resonances

range

n

 

 

IR-

k

resonances

 

Resonance

 

0

Wavelength

0

Circular frequency

Fig. 3.1.17. Realand imaginary part of the refractive index in the vicinity of a resonance in the UV. The principal shape is explained by the classical oscillator model after J.J. Thomson, P. Drude, and H.A. Lorentz [99Bor, 88Yeh].

Landolt-B¨ornstein

New Series VIII/1A1


Ref. p. 131] 3.1 Linear optics 97

γ [s1] : damping coe cient, N [m3] : density of molecules,

ε0 = 8.8542 × 1012 As/Vm : electric permittivity of vacuum.

Examples see [96Ped, 88Kle], generalization to dense media see [96Ped, 88Kle, 99Bor].

The Kramers-Kronig relation connects n(ω) with k(ω) [88Yeh].

3.1.5.2 Optical glasses

Dispersion formula [95Bac]:

 

 

 

 

 

 

 

 

n2

 

B1λ2

 

B2

λ2

B3

λ2

 

(λ) = 1 +

 

+

 

 

 

+

 

 

 

(Sellmeier’s formula) .

(3.1.62)

λ2 − C1

λ2

 

 

λ2

 

 

 

 

 

− C2

− C3

 

The dimensions of the constants are given in example 3.1.7. The available wavelength range is given by the transmission limits, usually.

Example 3.1.7. [96Sch]: Glass N-BK7: λ [µm], B1 = 1.03961212, B2 = 2.31792344 × 101, B3 = 1.01046945, C1 = 6.00069867 × 103 [µm2], C2 = 2.00179144 × 102 [µm2], C3 = 1.03560653 × 102

[µm2], n(0.6328 µm) = 1.51509, n(1.06 µm) = 1.50669.

Other interpolation formulae for n(λ) are given in [95Bac], [95Bas, Vol. II, Chap. 32], [05Gro1, p. 121].

Further information is available from glass catalogs (see Sect. 3.1.5.10) and from subroutines in commercial optical design programs:

relative dispersive power or Abbe’s number νd =

nd 1

with nd(587.56 nm = yellow He-

 

nF − nC

line), nF(486.13 nm = blue H-line), nC(656.27 nm = red H-line) [95Bac, 80Sch]; application: achromatic correction of systems [84Haf],

spectral range of transmission,

temperature coe cients of n and νd,

photoelastical coe cients,

Faraday’s e ect (Verdet’s constant),

chemical resistance, thermal conductivity, micro hardness etc.

Sellmeier-like formulae for crystals are available in [95Bas, Vol. II, Chap. 32]. Information in connection with laser irradiation damage is presented in [82Hac]. Specific values of laser glasses are given in tables in [01I ].

3.1.5.3 Dispersion characteristics for short-pulse propagation

The parameters can be calculated from the dispersion interpolation (3.1.62) [91Sal, 96Die]:

β(ν) = n(ν)

ν

(propagation constant [m1]) ,

(3.1.63)

 

 

 

 

c0

 

cph =

c0

(phase velocity [m s1]) ,

(3.1.64)

n(ν)

 

Landolt-B¨ornstein

New Series VIII/1A1


98

3.1.5 Optical materials

[Ref. p. 131

 

 

 

v =

2 π

 

=

1

 

(group velocity [m s1]) ,

d β

 

d β

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d ν

 

 

 

 

d ω

 

 

 

 

 

 

 

 

 

 

1

 

 

d2 β

 

 

d2 β

 

d

1

 

 

Dv =

 

 

 

 

 

= 2 π

 

=

 

 

 

 

(group velocity dispersion (GVD))

2

π

d ν2

 

d ω2

d ν

v

with

ν : frequency of light,

c0 : velocity of light in vacuum.

(3.1.65)

(3.1.66)

Application: Temporal pulse forming by the GVD of dispersive optical elements [96Die, 01Ben].

3.1.5.4 Optics of metals and semiconductors

The refractive index of metals is characterized by free-electron contributions (ω0 = 0 in (3.1.61)). One obtains from [67Sok, 72Woo], [95Bas, Vol. II, Chap. 35] with a plasma resonance (here collisionfree: γ = 0):

n2(ω) = 1

ωp

 

2

 

(3.1.67)

ω

with

 

 

 

ωp [s1]: plasma frequency, depending on free-electron density [88Kle]. From (3.1.67) follows

n(ω) < 1 for ω > ωp, which means λ < λp (example: λp = 209 nm for Na): transparency,

pure imaginary n(ω) for ω < ωp, λp < λ .

Other e ects change the ideal case (3.1.67) [88Kle].

The complex refractive index of semiconductors is determined by transitions of electrons between or within the energy bands and by photon interaction with the crystal lattice (reststrahlen wavelength region). It depends strongly on the wavelength and is modified by heterostructures and dopands [71Pan, 95Kli], [95Bas, Vol. II, Chap. 36].

3.1.5.5 Fresnel’s formulae

Fresnel’s formulae describe the transmission and reflection of plane light waves at a plane interface between

homogeneous isotropic media: [99Bor, 88Kle] and other textbooks on optics,

homogeneous isotropic medium and anisotropic medium: special cases [99Bor, 86Haf] and other textbooks on optics,

general case of anisotropic media: [58Fed],

modification by photonic crystals: [95Joa, 01Sak].

Fresnel’s formulae for the amplitude (field) reflection and transmission coe cients are listed in Table 3.1.7.

Plane of incidence: plane, containing the wave number vector k of the light and the normal vector n on the interface.

Landolt-B¨ornstein

New Series VIII/1A1