Файл: Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 908

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Ref. p. 131]

3.1 Linear optics

103

 

 

 

x

 

x

 

 

 

d pen

 

 

 

 

d G. H.

z

 

 

 

 

 

 

 

z

 

 

 

 

RP

 

 

 

 

 

n

n ’

n

n ’

 

 

Fig. 3.1.21. Total reflection of plane waves with an inhomogeneous wave in the medium with the refractive index n (dpen : amplitude 1/e).

Fig. 3.1.22. Goos–H¨anchen shift of a total reflected beam with finite (exaggerated small) cross section (RP: e ective reflection plane).

3.1.5.6.3Reflection at media with complex refractive index (Case nˆ = 1 and nˆ = n + i k )

In Fig. 3.1.23 the refractive index n and the attenuation index k of gold (Au) is shown, in Fig. 3.1.24 the reflectance for both polarization cases of gold is given.

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Au

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Refractiveindex n

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Attenuationindex k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

300

400

500

600

700

800

900

Wavelength [nm]

Fig. 3.1.23. Refractive index n and attenuation index k of gold (Au).

 

1.0

 

 

 

 

 

 

 

Au

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 400 nm

 

 

 

 

 

 

0.8

 

 

 

 

 

 

 

 

 

 

R s

 

 

 

 

 

 

 

 

 

s,p

0.6

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflectance

0.4

 

 

 

 

 

 

 

 

 

 

R p

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

30

60

90

 

 

Angle of incidence [°]

 

 

Fig. 3.1.24. Reflectance for both polarization cases

of gold (Au). There is a minimum of Rp which is connected with a pseudo Brewster angle.

Landolt-B¨ornstein

New Series VIII/1A1



104

 

3.1.5 Optical materials

[Ref. p. 131

 

x

 

 

 

Planes of

 

 

 

constant

 

 

 

amplitude

 

 

 

 

 

 

 

T

z

 

 

 

 

n

n ’ ik

 

 

 

Planes of

Fig. 3.1.25. Refraction at a medium with absorption: generation

 

constant

 

phase

of an inhomogeneous wave.

 

Inhomogeneous wave (Fig. 3.1.25): Snell’s refraction law is modified:

sin ΘT =

n

sin Θ

(3.1.82)

 

 

nT

 

with

2 n2T = n 2 − k 2 + n2 sin2 Θ + n 2 − k 2 − n2 sin2 Θ 2 + 4 n 2 k 2 (Ketteler’s formula) .

The e ective refractive index nT determines the direction angle ΘT of planes of constant phase in Fig. 3.1.25 via (3.1.82) [88Kle, p. 78], [41Str, p. 503], [99Bor, p. 740]. The full inhomogeneous wave can be calculated using [99Bor, p. 740].

Example 3.1.11. Θ = 45 , Au: λ = 800 nm, n = 0.19, k = 4.9, nT = 0.73, ΘT = 75.1 (see [28Koe, p. 209]).

Intensity attenuation in the case Θ = 0 :

I = I0 exp {−2

(ω/c) k z} .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.1.83)

1/e depth = 13 nm.

, Au: λ = 800 nm, n

 

= 0.19, k

 

= 4.9,

I = I

0

exp

 

 

×

 

 

 

 

,

Example 3.1.12. Θ

= 0

 

 

 

 

7.7

 

104 z[mm]

 

p

 

s

 

 

 

|rs|

 

 

 

p

 

|

 

p|

 

 

 

p

 

 

s

 

 

|

 

s|

s

 

Ellipsometry: δ

 

δ

 

and moduli

|rp|

of the reflected light r

 

=

 

r

 

exp (i δ

 

) and r

 

=

 

r

 

exp (i δ

)

 

 

 

 

 

 

 

 

 

 

can be measured. The complex refractive index of a material results [77Azz, 90Roe]. Application: Measurements for the optical constants of metals, semiconductors, and thin-film systems.

3.1.5.7 Crystal optics

3.1.5.7.1 Classification

The dielectric tensor εr = εij in (1.1.8) is symmetrical and real in the case of a nonabsorbing medium.

In Fig. 3.1.26 vectors connected with wave propagation in crystal optics are depicted. In Table 3.1.8 optical crystals are listed. In Table 3.1.9 three of the eight surfaces for visualization of wave propagation in crystals are presented.

Landolt-B¨ornstein

New Series VIII/1A1


Ref. p. 131]

 

 

 

3.1 Linear optics

 

105

 

 

 

 

 

 

 

 

 

E

 

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Beam edge

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1.26. Vectors connected with wave propagation in

 

 

 

 

s

 

crystal optics [99Bor]: s : ray direction unit vector Poynt-

 

 

 

 

 

 

ing vector E × H, n : unit vector in the normal direction

B, H

Beam edge

n =

k

k and phase planes, orthogonalities: B, H E, D, n, s ;

k

 

 

 

 

 

 

E s ; D n.

 

 

Table 3.1.8. Optical crystals.

 

 

 

 

 

 

 

 

 

 

 

Classification:

Refractive index

 

Optical type

Example

Values of the

system (syngony)

in the main axis

 

of crystal

 

refractive index

of crystal

system

 

 

 

 

for λ = 589.3 nm

 

 

 

 

 

 

triclinic,

nx = ny = nz = nx

 

biaxial crystal, no

NaNO3

nx = 1.344 ,

monoclinic,

 

 

 

ordinary waves

 

ny = 1.411 ,

orthorhombic

 

 

 

 

 

nz = 1.651

trigonal,

nx = ny = no

 

 

positive uniaxial

SiO2

no = 1.544,

tetragonal,

(ordinary

 

 

crystal: no < ne

(quartz)

ne = 1.553

hexagonal

index)

 

 

 

 

 

 

 

 

nx = nz = ne

 

 

negative uniaxial

CaCO3

no = 1.658,

 

 

 

(extraordinary

 

 

crystal: no > ne

(calcite)

ne = 1.486

 

 

 

index)

 

 

 

 

 

cubic

nx = ny = nz = n

 

isotropic crystal

NaCl

n = 1.544

 

 

 

 

 

 

 

 

 

Table 3.1.9. Three of the eight surfaces for visualization of wave propagation in crystals.

Surface

Given

Found by construction are the

 

 

 

Index ellipsoid (indicatrix)

normal direction n

D-vectors for the two polarization cases

(one-shell surface)

 

and the two refractive indices for phase

 

 

propagation

Index surface, wave vector

normal direction n ray directions s, which are perpendicular

surface (two-shell surface)

 

to the surface for both polarization cases

Ray surface, wave surface, representing

ray direction s

normal direction n, which is perpendicular

Huygens’ elementary wave for both

 

to the surface

polarization cases (two-shell surface)

 

 

 

 

 

Main feature of crystal optics: s is not parallel with n for wave propagation, mostly.

s is essential for description of the energy propagation (edges of bundles, rays),

n is essential for description of the interferences of infinite broad waves.

References: [28Szi, 54Bel, 58Shu, 61Ram, 76Fed, 79Wah, 84Yar, 04Ber, 99Pau, 99Bor]. A detailed comparison between that surfaces is given in [28Szi].

Landolt-B¨ornstein

New Series VIII/1A1


4B2
n2θ e
= BA +

106

3.1.5 Optical materials

[Ref. p. 131

 

 

 

3.1.5.7.2 Birefringence (example: uniaxial crystals)

Uniaxial crystals in the plane of incidence:

Refraction of the normal direction n of wavefronts: The wavevector surface is shown in Fig. 3.1.27.

sin Θo =

n

sin Θ (ordinary wave (ko))

(3.1.84)

 

 

no

 

 

(no does not depend on the angle of incidence),

 

 

 

n

 

 

sin Θe =

 

sin Θ

(extraordinary wave (ke))

(3.1.85)

nθ e (Θe(Θ))

(ne depends on the angle of incidence).

Refraction of rays (Poynting vector): se and so are given by tangent construction in Fig. 3.1.28.

Algorithm for the calculation of ko ( so), ke, se of Fig. 3.1.28 with n, no, ne, η, θ of Fig. 3.1.29 [86Haf]:

n2(n2o − n2e )2 sin2 Θ sin2(2η) 2 B2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

n2)2

sin Θ sin (2η)

× n2 sin2 Θ

(n2

 

n2)2

sin2(2η)

 

A

 

±

n(no

e

 

o

e

 

1 +

 

(3.1.86)

 

 

 

B

 

 

 

 

B

(refractive index for the extraordinary wave)

with

A = (n2e − n2o) n2 sin2 Θ cos (2η) − n2o n2e ,

B = n2o + (n2e − n2o) sin2 η ,

where the decision on the ± sign in (3.1.86) can be made by controlling the satisfaction of

n2θ e n2o + (n2e − n2o) sin2(η + Θe) = n2e n2o .

The resulting angles are:

 

 

 

Θo = arcsin(n sin Θ/no) ,

 

(3.1.87)

 

x

 

 

 

Optical axis

 

 

 

 

 

 

 

 

 

 

 

TE

 

 

 

 

 

k o

k e

TM

 

 

 

 

o e

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

Polarization

 

 

 

 

 

 

Fig. 3.1.27. Construction of wavefront birefringence with

TE and TM

 

 

 

 

 

 

Index n

 

 

 

Indices no and ne

the wavevector surface: The wavefronts show no transversal

 

 

 

limitation.

 

 

 

 

 

 

 

Landolt-B¨ornstein

New Series VIII/1A1