Файл: Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 908
Скачиваний: 0
Ref. p. 131] |
3.1 Linear optics |
103 |
|
|
|
x
|
x |
|
|
|
d pen |
|
|
|
|
d G. H. |
z |
|
|
|
|
|
|
|
|
|
z |
|
|
|
|
RP |
|
|
|
|
|
|
|
n |
n ’ |
n |
n ’ |
|
|
Fig. 3.1.21. Total reflection of plane waves with an inhomogeneous wave in the medium with the refractive index n (dpen : amplitude 1/e).
Fig. 3.1.22. Goos–H¨anchen shift of a total reflected beam with finite (exaggerated small) cross section (RP: e ective reflection plane).
3.1.5.6.3Reflection at media with complex refractive index (Case nˆ = 1 and nˆ = n + i k )
In Fig. 3.1.23 the refractive index n and the attenuation index k of gold (Au) is shown, in Fig. 3.1.24 the reflectance for both polarization cases of gold is given.
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Au |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Refractiveindex n |
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Attenuationindex k |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
k |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
400 |
500 |
600 |
700 |
800 |
900 |
Wavelength [nm]
Fig. 3.1.23. Refractive index n and attenuation index k of gold (Au).
|
1.0 |
|
|
|
|
|
|
|
Au |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= 400 nm |
|
|
|
|
|
|
0.8 |
|
|
|
|
|
|
|
|
|
|
R s |
|
|
|
|
|
|
|
|
|
|
|
s,p |
0.6 |
|
|
|
|
|
|
R |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Reflectance |
0.4 |
|
|
|
|
|
|
|
|
|
|
R p |
|
||
|
|
|
|
|
|
|
|
|
0.2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
30 |
60 |
90 |
||||
|
|
Angle of incidence [°] |
|
|
Fig. 3.1.24. Reflectance for both polarization cases
of gold (Au). There is a minimum of Rp which is connected with a pseudo Brewster angle.
Landolt-B¨ornstein
New Series VIII/1A1
104 |
|
3.1.5 Optical materials |
[Ref. p. 131 |
|
x |
|
|
|
Planes of |
|
|
|
constant |
|
|
|
amplitude |
|
|
|
|
|
|
|
T |
z |
|
|
|
|
|
n |
n ’ ik ’ |
|
|
|
Planes of |
Fig. 3.1.25. Refraction at a medium with absorption: generation |
|
|
constant |
||
|
phase |
of an inhomogeneous wave. |
|
Inhomogeneous wave (Fig. 3.1.25): Snell’s refraction law is modified:
sin ΘT = |
n |
sin Θ |
(3.1.82) |
|
|||
|
nT |
|
with
2 n2T = n 2 − k 2 + n2 sin2 Θ + n 2 − k 2 − n2 sin2 Θ 2 + 4 n 2 k 2 (Ketteler’s formula) .
The e ective refractive index nT determines the direction angle ΘT of planes of constant phase in Fig. 3.1.25 via (3.1.82) [88Kle, p. 78], [41Str, p. 503], [99Bor, p. 740]. The full inhomogeneous wave can be calculated using [99Bor, p. 740].
Example 3.1.11. Θ = 45 ◦, Au: λ = 800 nm, n = 0.19, k = 4.9, nT = 0.73, ΘT = 75.1 ◦ (see [28Koe, p. 209]).
Intensity attenuation in the case Θ = 0 ◦:
I = I0 exp {−2 |
(ω/c) k z} . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
− |
|
|
|
|
|
|
(3.1.83) |
||||||
1/e − depth = 13 nm. |
◦ |
, Au: λ = 800 nm, n |
|
= 0.19, k |
|
= 4.9, |
I = I |
0 |
exp |
|
|
× |
|
|
|
|
, |
|||||||||||||
Example 3.1.12. Θ |
= 0 |
|
|
|
|
7.7 |
|
104 z[mm] |
||||||||||||||||||||||
|
p − |
|
s |
|
|
|
|rs| |
|
|
|
p |
|
| |
|
p| |
|
|
|
p |
|
|
s |
|
|
| |
|
s| |
s |
|
|
Ellipsometry: δ |
|
δ |
|
and moduli |
|rp| |
of the reflected light r |
|
= |
|
r |
|
exp (i δ |
|
) and r |
|
= |
|
r |
|
exp (i δ |
) |
|||||||||
|
|
|
|
|
|
|
|
|
|
can be measured. The complex refractive index of a material results [77Azz, 90Roe]. Application: Measurements for the optical constants of metals, semiconductors, and thin-film systems.
3.1.5.7 Crystal optics
3.1.5.7.1 Classification
The dielectric tensor εr = εij in (1.1.8) is symmetrical and real in the case of a nonabsorbing medium.
In Fig. 3.1.26 vectors connected with wave propagation in crystal optics are depicted. In Table 3.1.8 optical crystals are listed. In Table 3.1.9 three of the eight surfaces for visualization of wave propagation in crystals are presented.
Landolt-B¨ornstein
New Series VIII/1A1
Ref. p. 131] |
|
|
|
3.1 Linear optics |
|
105 |
||
|
|
|
|
|
|
|
|
|
E |
|
|
D |
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
Beam edge |
|
|
|
|
|
|
|
|
|
|
|
Fig. 3.1.26. Vectors connected with wave propagation in |
||
|
|
|
|
s |
|
crystal optics [99Bor]: s : ray direction unit vector Poynt- |
||
|
|
|
|
|
|
ing vector E × H, n : unit vector in the normal direction |
||
B, H |
Beam edge |
n = |
k |
k and phase planes, orthogonalities: B, H E, D, n, s ; |
||||
k |
||||||||
|
|
|
|
|
|
E s ; D n. |
|
|
Table 3.1.8. Optical crystals. |
|
|
|
|
|
|||
|
|
|
|
|
|
|||
Classification: |
Refractive index |
|
Optical type |
Example |
Values of the |
|||
system (syngony) |
in the main axis |
|
of crystal |
|
refractive index |
|||
of crystal |
system |
|
|
|
|
for λ = 589.3 nm |
||
|
|
|
|
|
|
|||
triclinic, |
nx = ny = nz = nx |
|
biaxial crystal, no |
NaNO3 |
nx = 1.344 , |
|||
monoclinic, |
|
|
|
ordinary waves |
|
ny = 1.411 , |
||
orthorhombic |
|
|
|
|
|
nz = 1.651 |
||
trigonal, |
nx = ny = no |
|
|
positive uniaxial |
SiO2 |
no = 1.544, |
||
tetragonal, |
(ordinary |
|
|
crystal: no < ne |
(quartz) |
ne = 1.553 |
||
hexagonal |
index) |
|
|
|
|
|
||
|
|
|
nx = nz = ne |
|
|
negative uniaxial |
CaCO3 |
no = 1.658, |
|
|
|
(extraordinary |
|
|
crystal: no > ne |
(calcite) |
ne = 1.486 |
|
|
|
index) |
|
|
|
|
|
cubic |
nx = ny = nz = n |
|
isotropic crystal |
NaCl |
n = 1.544 |
|||
|
|
|
|
|
|
|
|
|
Table 3.1.9. Three of the eight surfaces for visualization of wave propagation in crystals.
Surface |
Given |
Found by construction are the |
|
|
|
Index ellipsoid (indicatrix) |
normal direction n |
D-vectors for the two polarization cases |
(one-shell surface) |
|
and the two refractive indices for phase |
|
|
propagation |
Index surface, wave vector |
normal direction n ray directions s, which are perpendicular |
|
surface (two-shell surface) |
|
to the surface for both polarization cases |
Ray surface, wave surface, representing |
ray direction s |
normal direction n, which is perpendicular |
Huygens’ elementary wave for both |
|
to the surface |
polarization cases (two-shell surface) |
|
|
|
|
|
Main feature of crystal optics: s is not parallel with n for wave propagation, mostly.
–s is essential for description of the energy propagation (edges of bundles, rays),
–n is essential for description of the interferences of infinite broad waves.
References: [28Szi, 54Bel, 58Shu, 61Ram, 76Fed, 79Wah, 84Yar, 04Ber, 99Pau, 99Bor]. A detailed comparison between that surfaces is given in [28Szi].
Landolt-B¨ornstein
New Series VIII/1A1
106 |
3.1.5 Optical materials |
[Ref. p. 131 |
|
|
|
3.1.5.7.2 Birefringence (example: uniaxial crystals)
Uniaxial crystals in the plane of incidence:
–Refraction of the normal direction n of wavefronts: The wavevector surface is shown in Fig. 3.1.27.
sin Θo = |
n |
sin Θ (ordinary wave (ko)) |
(3.1.84) |
||
|
|||||
|
no |
|
|
||
(no does not depend on the angle of incidence), |
|
||||
|
|
n |
|
|
|
sin Θe = |
|
sin Θ |
(extraordinary wave (ke)) |
(3.1.85) |
|
nθ e (Θe(Θ)) |
(ne depends on the angle of incidence).
–Refraction of rays (Poynting vector): se and so are given by tangent construction in Fig. 3.1.28.
–Algorithm for the calculation of ko ( so), ke, se of Fig. 3.1.28 with n, no, ne, η, θ of Fig. 3.1.29 [86Haf]:
n2(n2o − n2e )2 sin2 Θ sin2(2η) 2 B2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
n2)2 |
sin Θ sin (2η) |
× n2 sin2 Θ |
(n2 |
|
n2)2 |
sin2(2η) |
|
A |
|
||
± |
n(no |
− |
e |
|
o |
− |
e |
|
− 1 + |
|
(3.1.86) |
||
|
|
|
B |
|
|
|
|
B |
(refractive index for the extraordinary wave)
with
A = (n2e − n2o) n2 sin2 Θ cos (2η) − n2o n2e ,
B = n2o + (n2e − n2o) sin2 η ,
where the decision on the ± sign in (3.1.86) can be made by controlling the satisfaction of
n2θ e n2o + (n2e − n2o) sin2(η + Θe) = n2e n2o .
The resulting angles are: |
|
|
|
||||
Θo = arcsin(n sin Θ/no) , |
|
(3.1.87) |
|||||
|
x |
|
|
|
|||
Optical axis |
|
|
|
|
|
|
|
|
|
|
|
TE |
|
|
|
|
|
k o |
k e |
TM |
|
||
|
|
|
o e |
|
z |
||
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k |
|
|
|
|
|
|
Polarization |
|
|
|
|
|
|
Fig. 3.1.27. Construction of wavefront birefringence with |
TE and TM |
|
|
|
|
|
|
|
Index n |
|
|
|
Indices no and ne |
the wavevector surface: The wavefronts show no transversal |
||
|
|
|
limitation. |
||||
|
|
|
|
|
|
|
Landolt-B¨ornstein
New Series VIII/1A1