Файл: Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 909

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

B¨ornstein-Landolt

VIII/1A1 Series New

Table 3.1.7. Fresnel’s formulae for the amplitude (field) reflection and transmission coe cients.

Case

The four values

Using the angles

sin Θ

is eliminated

 

Θ, Θ , nˆ, and nˆ

Θ and Θ only

nˆ

 

 

 

are considered

 

 

 

 

n¯ =

 

 

 

 

 

 

nˆ

 

Reflection

rs = Es = Es

Reflection

rp = Ep = Ep

Transmission

ts = Es = Es

Transmission

tp = Ep = Ep

Application of cases

nˆ cos Θ − nˆ cos Θ

nˆ cos Θ + nˆ cos Θ

nˆ cos Θ − nˆ cos Θ

nˆ cos Θ + nˆ cos Θ

n cos Θ

nˆ cos Θ + nˆ cos Θ

n cos Θ

nˆ cos Θ + nˆ cos Θ

Mostly used for

pure dielectric media.

sin(Θ − Θ ) sin(Θ + Θ )

tan(Θ − Θ )

tan(Θ + Θ )

2 sin Θ cos Θ

sin(Θ + Θ )

2 sin Θ cos Θ

sin(Θ + Θ ) cos(Θ − Θ )

In a stack of films, the angles to the axis were calculated previously.

cos Θ − n¯2 sin2 Θ

cos Θ + n¯2 sin2 Θ

(3.1.68)

n¯2 cos Θ − n¯2 sin2 Θ

n¯2 cos Θ + n¯2 sin2 Θ

(3.1.69)

2 cos Θ

cos Θ + n¯2 sin2 Θ

(3.1.70)

n cos Θ

cos Θ + n¯2 n¯2 sin2 Θ

(3.1.71)

See remark

in Sect. 3.1.5.5.

131] .p .Ref

optics Linear 1.3

99


100

 

 

 

3.1.5 Optical materials

[Ref. p. 131

 

 

x

 

 

 

x

 

 

k

H

 

 

k

E

 

 

 

k

 

H

k

 

 

E

 

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

E

H

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

z

 

 

 

z

 

k

 

 

E

k

 

 

E

 

 

 

 

 

 

 

 

 

 

H

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

a

Index n

Index n

b

Index n

Index n

 

Fig. 3.1.18. Refraction at an interface, represented in the plane of incidence: (a) Es-case, (b) Ep-case. The commonly used convention is shown for the orientation of the relevant vectors (k: the wave number

vector, E: the electrical field, and H: the magnetic field) ensuring that k, E, and H are a right-handed system in every case. The E-field is important for the action on a nonmagnetic material.

Polarization:

E perpendicular to the plane of incidence: s-polarization (TE-case or σ-case [88Kle]), the corresponding E-component is called E [99Bor] or Es (s: “senkrecht” (German) which means “perpendicular”) [88Yeh] or index E [97Hua] or index x [90Roe, 77Azz, 91Sal].

E parallel to the plane of incidence: p-polarization (TM-case or π-case [88Kle]), the corresponding E-component is called E [99Bor] or Ep [88Yeh] or index M [97Hua] or index y [90Roe, 77Azz, 91Sal].

Snell’s law :

nˆ sin Θ = nˆ sin Θ

(3.1.72)

with

nˆ, nˆ : refractive indices of both media, respectively, Θ, Θ : see Fig. 3.1.18.

Other convention than Fig. 3.1.18b [58Mac, 89Gha, 91Ish] (electrical engineering) on the orientation of the E-vectors: E and E point into the same direction for Θ → 0, H changes sign; application: E- interferences.

Remark :

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nˆ is real and nˆ is complex (absorption [76Fed, 77Azz] or gain [88Boi]).

 

 

 

nˆ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

< 1 and (¯n2 sin2 Θ) < 0 (total reflection). Then n¯2 sin2 Θ =

nˆ and nˆ are real and n¯ =

 

 

nˆ

 

i

sin2 Θ − n¯2

yields for (3.1.68) and (3.1.69) rs = exp (i δs) and rp = exp (i δp) (modulus = 1,

 

all energy reflected) and tan

 

δs

=

 

sin2 Θ − n¯2

and tan

δp

=

 

sin2 Θ − n¯2

.

 

2

 

cos Θ

 

 

 

 

 

 

 

 

 

 

2

 

 

n¯2 cos Θ

The intensities in the media are calculated with help of the z-component of Poynting’s vector [88Kle, 90Roe, 76Fed].

Reflectance (reflected part of intensity):

 

Rs,p = |rs,p|2 .

(3.1.73)

Landolt-B¨ornstein

New Series VIII/1A1



ΘB + ΘB = 90,

Ref. p. 131]

 

3.1 Linear optics

Transmittance (transmitted part of intensity):

Ts,p =

Re (ˆn cos Θ )

|ts,p|

2

Re (ˆn cos Θ)

 

with

Re : real part.

Energy conservation:

Ts,p + Rs,p = 1 .

101

(3.1.74)

3.1.5.6 Special cases of refraction

3.1.5.6.1 Two dielectric isotropic homogeneous media (nˆ and nˆ are real)

r

s

=

n − n

=

r

p

.

 

 

(3.1.75)

n + n

 

 

 

 

 

 

 

 

 

 

 

 

(The negative sign of r

p

results from the convention of Fig. 3.1.18 that E

p

is di racted into

E ).

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

n − n

 

2

 

 

 

 

 

 

 

 

R

 

= R

 

=

 

and T

 

= T

 

= 1

 

R

 

.

s

p

n + n

s

p

s

 

 

 

 

 

 

 

 

Example 3.1.8. n = 1, n

= 1.5 (glass): Rs = 0.04 .

 

 

3.1.5.6.2 Variation of the angle of incidence

3.1.5.6.2.1 External reflection (n < n )

Brewster’s angle (angle of polarization) ΘB :

n

Rp = 0 , tan ΘB = n .

Example 3.1.9. n = 1, n = 1.5, ΘB = 56.3. See Fig. 3.1.19.

3.1.5.6.2.2 Internal reflection (n > n )

Critical angle of total reflection:

n sin ΘC = n .

Total reflection: Θ > ΘC with |rs| = |rp| = 1 and the phases of the reflected waves: rs and rp = exp (i Φp) .

Brewster’s angle:

n tan ΘB = n .

(3.1.76)

(3.1.77)

(3.1.78)

= exp (i Φs)

(3.1.79)

Landolt-B¨ornstein

New Series VIII/1A1


102

3.1.5 Optical materials

[Ref. p. 131

 

 

 

 

1.0

 

 

 

 

0.8

 

 

0.6

 

s,p

0.4

 

r

 

coefficient

0

 

 

0.2

 

Reflection

0.4

 

 

0.2

 

 

0.6

 

 

0.8

 

 

1.0

 

 

0

a

 

s,p

rp

R

Reflectance

rs

 

10

20

30

40

50

60

70

80

90

 

 

Angle of incidence [°]

 

 

b

1.0

0.8

0.6

0.4

R s

0.2

R p

0

0

10

20

30

40

50

60

70

80

90

 

 

 

Angle of incidence [°]

 

 

 

Fig. 3.1.19. (a) Reflection coe cients rp and rs and (b) reflectances Rp and Rs for n = 1 and n = 1.5.

 

1.0

 

 

 

 

0.8

 

 

0.6

 

s,p

0.4

 

r

 

coefficient

0

 

 

0.2

 

Reflection

0.4

 

 

0.2

 

 

0.6

 

 

0.8

 

 

1.0

 

 

0

a

p

rs

s

rp

p s

10

20

30

40

50

60

70

80

 

 

Angle of incidence [°]

 

 

π

s,pPhase

π

2

0

90

s,p R

Reflectance

b

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R s

 

 

R p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

 

 

 

 

 

 

Angle of incidence [°]

 

 

 

 

 

 

Fig. 3.1.20. Internal reflection (n = 1.5, n = 1). (a) Reflection coe cients rp and rs for Θ < ΘC and phases Φp and Φs for Θ > ΘC. (b) Reflectances Rp and Rs (= 1 for Θ > ΘC).

Example 3.1.10. n = 1.5, n = 1, ΘC = 41.8, ΘB = 33.7. See Fig. 3.1.20.

Penetration depth in Fig. 3.1.21 [88Kle, p. 67]:

dpen =

 

λ0

 

.

(3.1.80)

 

 

 

 

n2 sin2

 

2 π

Θ − n 2

 

Goos–H¨anchen shift [88Yeh, p. 74], see Fig. 3.1.22:

dG.−H.,s,p =

d Φs,p

(3.1.81)

d Θ

with Φp and Φs from Fig. 3.1.20. For a more precise treatment of the Goos–H¨anchen shift for Gaussian beams see [05Gro1, p. 100].

Landolt-B¨ornstein

New Series VIII/1A1