Файл: Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 909
Скачиваний: 0
B¨ornstein-Landolt
VIII/1A1 Series New
Table 3.1.7. Fresnel’s formulae for the amplitude (field) reflection and transmission coe cients.
Case |
The four values |
Using the angles |
sin Θ |
is eliminated |
||
|
Θ, Θ , nˆ, and nˆ |
Θ and Θ only |
nˆ |
|
|
|
|
are considered |
|
|
|||
|
|
n¯ = |
|
|
|
|
|
|
|
nˆ |
|
Reflection
rs = Es = Es
Reflection
rp = Ep = Ep
Transmission
ts = Es = Es
Transmission
tp = Ep = Ep
Application of cases
nˆ cos Θ − nˆ cos Θ
nˆ cos Θ + nˆ cos Θ
nˆ cos Θ − nˆ cos Θ
nˆ cos Θ + nˆ cos Θ
2ˆn cos Θ
nˆ cos Θ + nˆ cos Θ
2ˆn cos Θ
nˆ cos Θ + nˆ cos Θ
Mostly used for
pure dielectric media.
sin(Θ − Θ ) − sin(Θ + Θ )
tan(Θ − Θ )
tan(Θ + Θ )
2 sin Θ cos Θ
sin(Θ + Θ )
2 sin Θ cos Θ
sin(Θ + Θ ) cos(Θ − Θ )
In a stack of films, the angles to the axis were calculated previously.
cos Θ − n¯2 − sin2 Θ
cos Θ + n¯2 − sin2 Θ
(3.1.68)
n¯2 cos Θ − n¯2 − sin2 Θ
n¯2 cos Θ + n¯2 − sin2 Θ
(3.1.69)
2 cos Θ
cos Θ + n¯2 − sin2 Θ
(3.1.70)
2¯n cos Θ
cos Θ + n¯2 n¯2 − sin2 Θ
(3.1.71)
See remark
in Sect. 3.1.5.5.
131] .p .Ref
optics Linear 1.3
99
100 |
|
|
|
3.1.5 Optical materials |
[Ref. p. 131 |
||
|
|
x |
|
|
|
x |
|
|
k” |
H” |
|
|
k” |
E’ |
|
|
|
k’ |
|
H” |
k’ |
||
|
|
E’ |
|
|
|||
|
|
|
|
|
|
||
|
E” |
|
|
|
|
|
|
|
|
|
|
E” |
H’ |
|
|
|
|
’ |
|
|
|
||
|
|
H’ |
|
|
’ |
|
|
|
|
|
z |
|
|
|
z |
|
k |
|
|
E |
k |
|
|
E |
|
|
|
|
|
|
|
|
|
|
|
H |
|
|
|
|
H |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a |
Index n |
Index n ’ |
b |
Index n |
Index n ’ |
|
Fig. 3.1.18. Refraction at an interface, represented in the plane of incidence: (a) Es-case, (b) Ep-case. The commonly used convention is shown for the orientation of the relevant vectors (k: the wave number
vector, E: the electrical field, and H: the magnetic field) ensuring that k, E, and H are a right-handed system in every case. The E-field is important for the action on a nonmagnetic material.
Polarization:
–E perpendicular to the plane of incidence: s-polarization (TE-case or σ-case [88Kle]), the corresponding E-component is called E [99Bor] or Es (s: “senkrecht” (German) which means “perpendicular”) [88Yeh] or index E [97Hua] or index x [90Roe, 77Azz, 91Sal].
–E parallel to the plane of incidence: p-polarization (TM-case or π-case [88Kle]), the corresponding E-component is called E [99Bor] or Ep [88Yeh] or index M [97Hua] or index y [90Roe, 77Azz, 91Sal].
Snell’s law :
nˆ sin Θ = nˆ sin Θ |
(3.1.72) |
with
nˆ, nˆ : refractive indices of both media, respectively, Θ, Θ : see Fig. 3.1.18.
Other convention than Fig. 3.1.18b [58Mac, 89Gha, 91Ish] (electrical engineering) on the orientation of the E-vectors: E and E point into the same direction for Θ → 0, H changes sign; application: E- interferences.
Remark : |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
– |
nˆ is real and nˆ is complex (absorption [76Fed, 77Azz] or gain [88Boi]). |
||||||||||||||||||
|
|
|
nˆ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
< 1 and (¯n2 − sin2 Θ) < 0 (total reflection). Then n¯2 − sin2 Θ = |
|||||||||||||||||
– |
nˆ and nˆ are real and n¯ = |
|
|
||||||||||||||||
nˆ |
|||||||||||||||||||
|
i |
sin2 Θ − n¯2 |
yields for (3.1.68) and (3.1.69) rs = exp (i δs) and rp = exp (i δp) (modulus = 1, |
||||||||||||||||
|
all energy reflected) and tan |
|
δs |
= |
− |
|
sin2 Θ − n¯2 |
and tan |
δp |
= |
− |
|
sin2 Θ − n¯2 |
. |
|||||
|
2 |
|
cos Θ |
|
|
|
|||||||||||||
|
|
|
|
|
|
|
2 |
|
|
n¯2 cos Θ |
The intensities in the media are calculated with help of the z-component of Poynting’s vector [88Kle, 90Roe, 76Fed].
Reflectance (reflected part of intensity): |
|
Rs,p = |rs,p|2 . |
(3.1.73) |
Landolt-B¨ornstein
New Series VIII/1A1
Ref. p. 131] |
|
3.1 Linear optics |
|
Transmittance (transmitted part of intensity): |
|||
Ts,p = |
Re (ˆn cos Θ ) |
|ts,p| |
2 |
Re (ˆn cos Θ) |
|
with
Re : real part.
Energy conservation:
Ts,p + Rs,p = 1 .
101
(3.1.74)
3.1.5.6 Special cases of refraction
3.1.5.6.1 Two dielectric isotropic homogeneous media (nˆ and nˆ are real)
r |
s |
= |
n − n |
= |
− |
r |
p |
. |
|
|
(3.1.75) |
||
n + n |
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
||||
(The negative sign of r |
p |
results from the convention of Fig. 3.1.18 that E |
p |
is di racted into |
− |
E ). |
|||||||
|
|
|
|
|
|
|
|
|
|
p |
|
|
|
|
|
|
n − n |
|
2 |
|
|
|
|
|
|
|
|
|
R |
|
= R |
|
= |
|
and T |
|
= T |
|
= 1 |
|
R |
|
. |
|||
s |
p |
n + n |
s |
p |
− |
s |
|||||||||||
|
|
|
|
|
|
|
|
||||||||||
Example 3.1.8. n = 1, n |
= 1.5 (glass): Rs = 0.04 . |
|
|
3.1.5.6.2 Variation of the angle of incidence
3.1.5.6.2.1 External reflection (n < n )
Brewster’s angle (angle of polarization) ΘB :
n
Rp = 0 , tan ΘB = n .
Example 3.1.9. n = 1, n = 1.5, ΘB = 56.3◦ . See Fig. 3.1.19.
3.1.5.6.2.2 Internal reflection (n > n )
Critical angle of total reflection:
n sin ΘC = n .
Total reflection: Θ > ΘC with |rs| = |rp| = 1 and the phases of the reflected waves: rs and rp = exp (i Φp) .
Brewster’s angle:
n tan ΘB = n .
(3.1.76)
(3.1.77)
(3.1.78)
= exp (i Φs)
(3.1.79)
Landolt-B¨ornstein
New Series VIII/1A1
102 |
3.1.5 Optical materials |
[Ref. p. 131 |
|
|
|
|
1.0 |
|
|
|
|
|
0.8 |
|
|
0.6 |
|
s,p |
0.4 |
|
r |
|
|
coefficient |
0 |
|
|
0.2 |
|
Reflection |
0.4 |
|
|
0.2 |
|
|
0.6 |
|
|
0.8 |
|
|
1.0 |
|
|
0 |
a
|
s,p |
|
rp |
R |
|
Reflectance |
||
rs |
||
|
10 |
20 |
30 |
40 |
50 |
60 |
70 |
80 |
90 |
|
|
Angle of incidence [°] |
|
|
b |
1.0
0.8
0.6
0.4
R s
0.2
R p
0
0 |
10 |
20 |
30 |
40 |
50 |
60 |
70 |
80 |
90 |
|
|
|
Angle of incidence [°] |
|
|
|
Fig. 3.1.19. (a) Reflection coe cients rp and rs and (b) reflectances Rp and Rs for n = 1 and n = 1.5.
|
1.0 |
|
|
|
|
|
0.8 |
|
|
0.6 |
|
s,p |
0.4 |
|
r |
|
|
coefficient |
0 |
|
|
0.2 |
|
Reflection |
0.4 |
|
|
0.2 |
|
|
0.6 |
|
|
0.8 |
|
|
1.0 |
|
|
0 |
a
p
rs |
s |
rp
p s
10 |
20 |
30 |
40 |
50 |
60 |
70 |
80 |
|
|
Angle of incidence [°] |
|
|
π
s,pPhase
π
2
0
90
s,p R
Reflectance
b
1.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R s |
|
|
R p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
10 |
20 |
30 |
40 |
50 |
60 |
70 |
80 |
90 |
||||||||||
|
|
|
|
|
|
Angle of incidence [°] |
|
|
|
|
|
|
Fig. 3.1.20. Internal reflection (n = 1.5, n = 1). (a) Reflection coe cients rp and rs for Θ < ΘC and phases Φp and Φs for Θ > ΘC. (b) Reflectances Rp and Rs (= 1 for Θ > ΘC).
Example 3.1.10. n = 1.5, n = 1, ΘC = 41.8◦, ΘB = 33.7◦. See Fig. 3.1.20.
Penetration depth in Fig. 3.1.21 [88Kle, p. 67]:
dpen = |
|
λ0 |
|
. |
(3.1.80) |
|
|
|
|||
|
n2 sin2 |
|
|||
2 π |
Θ − n 2 |
|
Goos–H¨anchen shift [88Yeh, p. 74], see Fig. 3.1.22:
dG.−H.,s,p = |
d Φs,p |
(3.1.81) |
d Θ |
with Φp and Φs from Fig. 3.1.20. For a more precise treatment of the Goos–H¨anchen shift for Gaussian beams see [05Gro1, p. 100].
Landolt-B¨ornstein
New Series VIII/1A1