Файл: Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 912
Скачиваний: 0
110 |
3.1.6 Geometrical optics |
[Ref. p. 131 |
|
|
|
Lagrange’s invariant: |
|
|
x n s = x n s |
|
(3.1.94) |
with
n : object-space refractive index, n : image-space refractive index, s : object distance,
s : image distance,
r : radius of curvature of the interface, x : height of the object point,
x : height of the image point,
z : focus-related object distance, z : focus-related image distance.
Imaging through an optical system: concatenation of the imaging of the spherical surfaces in suc-
cession via (3.1.90) by using sfollowing surface = sprior surface − d, d : the distance between the surfaces, and (3.1.94) for an object height x = 0.
3.1.6.1.2 Imaging with a thick lens
Figure 3.1.31 shows the axial imaging with a thick lens, Fig. 3.1.32 depicts Listing’s construction for thick-lens imaging of a finite-height object point O to image point O .
Thick-lens imaging equation:
1 |
+ |
1 |
= |
1 |
= (n |
− |
1) |
1 |
1 |
|
+ t (n − 1)2 . |
|
|
|
|
|
(3.1.95) |
|||||
− a a |
|
f |
|
|
|
r1 |
− r2 |
|
|
n r1 r2 |
|
|
|
|
|
|
|
|||||
|
|
Radius r1 |
|
|
|
Radius r2 |
|
|
|
|
|
Radius r1 |
|
|
|
Radius r2 |
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
|
|
|
O |
F |
|
|
|
|
H |
H’ |
|
|
|
F ’ |
|
O ’ |
z |
x |
|
3 |
|
4 |
F ’ |
O ’ |
|
|
|
|
|
|
|
|
|
|
|
|
’ |
|
z |
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O |
F |
5 |
H |
H’ |
x ’ |
||
|
s |
|
|
|
|
|
|
|
|
s ’ |
|
|
|
|
||||||||
|
|
|
|
|
|
t |
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|||
|
a |
|
f |
|
|
|
|
|
f ’ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
s |
H |
|
|
s’ |
|
a’ |
|
|
|
|
|
a |
|
|
|
|
a’ |
|
|
|
|
|
|
|
|
|
H ' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n = 1 |
|
|
|
|
n ‘ |
|
|
n = 1 |
|
|
|
|
n = 1 |
|
|
n ‘ |
|
n = 1 |
|
Fig. 3.1.31. Axial imaging with a thick lens. Cardinal planes and points are: object-space principal
plane with object principal point H on axis, imagespace principal plane with image principal point H on axis, object-space focal point F , image-space focal point F . Nodal points [98Mah, 96Ped] are equal
to the principal points if O and O are embedded
in media with equal refractive index as here. Then f = −f . The sign convention used here means:
Parameters characterized by an arrow pointing to the left (right) hand side show a negative (positive) sign [80Hof, 86Haf]. The dashed line shows the use of H for simplifying the plot for a ray focusing.
Fig. 3.1.32. Listing’s construction for thick-lens imaging of a finite-height object point O to image point O . Scheme of construction: Ray 1 (parallel with axis) is sharply bent at plane H towards F . Ray 3 towards H is continued at H with the angle σ = σ . Ray 5 through F is bent sharply parallel with axis at H-plane. The magnification x /x =
a /a can be calculated by elimination of a from (3.1.95) x .
Landolt-B¨ornstein
New Series VIII/1A1
Ref. p. 131] |
3.1 Linear optics |
111 |
|
|
|
Position of the principal point H:
s |
= |
n − 1 |
f t . |
(3.1.96) |
H |
|
− n r2 |
|
Position of the principal point H :
|
s |
= |
n − 1 |
f t . |
|
|
|
|
|
(3.1.97) |
||||||
|
H |
|
|
|
− n r1 |
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
Distance between the principal planes: |
|
|
||||||||||||||
|
|
|
|
= t |
1 |
|
|
f |
n − 1 |
|
1 |
|
1 |
. |
(3.1.98) |
|
|
H H |
|
|
|
|
|||||||||||
|
|
|
− |
n |
r1 |
− r2 |
||||||||||
|
|
|
|
|
|
|
|
|
Thin lens: t 0 : (3.1.95) “Lens maker’s formula”.
3.1.6.2Gaussian matrix (ABCD-matrix, ray-transfer matrix) formalism for paraxial optics
Three tasks can be treated with the help of the ray-transfer matrix:
1.full description of paraxial optics (this section, Sect. 3.1.6.2),
2.Gaussian beam propagation (coherent radiation) by combination with a special beam calculation algorithm (see Sect. 3.1.7 on beam propagation),
3.propagation of the second-order moments of the radiation field (inclusion of partial coherent radiation) (see Chap. 2.2 on beam characterization).
The optical system can be the separating distance in an optical medium, a single spherical optical surface or a true, more complicated optical system.
There are di erent definitions for the ABCD-matrices:
Here: The slope components of the input and output rays are the real angles without any relation to the refractive indices at input and output spaces of Fig. 3.1.33 [66Kog1, 66Kog2, 84Hau, 91Sal, 95Bas, 96Ped, 96Yar, 98Hec, 98Sve, 01I , 05Gro1, 05Hod]. Then, the determinant of the matrix M : M = n /n with n the index of the medium of the input plane and n the index of the medium of the output plane.
Other authors [75Ger, 86Sie, 88Kle, 04Ber] use:
slope parameter = (angle) × (related refractive index). Then the equation M = 1 applies.
In Fig. 3.1.34 the concatenation of di erent ray-transfer matrices for di erent types of subsystems is shown.
Input plane |
|
|
|
|
Output plane |
|
|
|
|
x |
|
|
|
|
x |
dx |
|
|
|
|
dx |
|
|
|
|
|
|
|
1 dz 1 |
|
|
2 |
dz |
2 |
|
x |
1 |
|
|
|
|
x2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
z |
|
|
|
z |
|
|
Input |
Optical system |
Output |
|
|
||||
x1 |
|
x2 |
|
A B |
x1 |
x2 |
|
|
1 |
|
= |
2 |
|
|
|||
|
2 |
C D |
1 |
|
|
|||
|
|
|
|
|
|
|||
|
|
x2 |
= |
M |
x1 |
|
|
|
|
|
2 |
|
|
1 |
|
|
|
Fig. 3.1.33. Transfer of the input height x1 and slope α1 into the output height x2 and slope α2 with the raytransfer matrix M. The sign of slope α1 is positive in this
figure. The German standard DIN 1335 uses a di erent sign with change of some signs in the ABCD matrices
[96Ped].
Landolt-B¨ornstein
New Series VIII/1A1
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
3.1.6 Geometrical optics |
|
|
|
|
[Ref. p. 131 |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
Element 1 |
Element 2 |
|
|
Element 3 |
|
Following |
|
|
|
|
|
|||||||||||||
|
|
|
Lens |
Air distance |
|
System |
|
elements |
|
|
|
|
|
|||||||||||||
|
1 |
|
|
|
|
|
|
|
|
|
||||||||||||||||
x1 |
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
x2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
x |
3 |
|
|
|
|
|
|
|
x4 |
4 |
|
x |
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
M 1 |
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
n |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
M2 |
|
|
|
|
|
M3 |
|
|
|
Output plane |
|
|
||||||
Input plane |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
Output plane |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
of element 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
= input plane |
|
|
M = Mn 1... M3 M2 M1 |
|
|
|
|
|
|||||||||||||
|
|
|
|
|
of element 2 |
|
|
|
|
|
|
|
Fig. 3.1.34. Concatenation of di erent ray-transfer matrices for di erent types of sub-systems. Matrices known for systems before can be used to construct the matrix for a larger system containing the known systems. The sequence of the matrices is shown at the bottom of the figure.
3.1.6.2.1 Simple interfaces and optical elements with rotational symmetry
In Table 3.1.11 ABCD-matrices for simple interfaces and optical elements with rotational symmetry are listed.
3.1.6.2.2 Non-symmetrical optical systems
Rotational symmetry lacks and the axis is tilted due to the non-symmetrical optical system. In such a system, the central ray of imaging is called the basic ray. The optics in a narrow region around the basic ray is called parabasal optics [95Bas, Vol. 1, p. 1.47] as analogon to paraxial optics. For treatment of astigmatic pencils see [72Sta].
A special case of the non-symmetrical optical system is a system without torsion: Two orthogonal cases do not mix during propagation. Examples are di erent setups of spectroscopy and laser physics (ring resonators).
In Table 3.1.12 ABCD-matrices for non-symmetrical optical elements without torsion are listed.
3.1.6.2.3 Properties of a system
Properties of a system included in its ABCD-matrix are discussed in [75Ger, 96Ped, 05Hod, 05Gro1]. In Table 3.1.13 distances between cardinal elements of an optical system are listed, in Table 3.1.14 the meaning of the vanishing of di erent elements of the ABCD-matrix is depicted.
3.1.6.2.4 General parabolic systems without rotational symmetry
The generalization of the two-dimensional ray transfer after Fig. 3.1.33 to three dimensions [69Arn] is shown in Fig. 3.1.35. The ray in the input plane is characterized by two coordinates x1 and y1 of the piercing point P and two small (paraxial range) angles α1 and β1 .
The matrix S relates these parameters to the corresponding parameters in the output plane like in Fig. 3.1.33:
Landolt-B¨ornstein
New Series VIII/1A1
Ref. p. 131] |
|
|
|
|
|
|
|
|
|
|
|
|
|
3.1 Linear optics |
113 |
||||
|
|
|
|
|
|
|
|
|
|
|
|||||||||
Table 3.1.11. ABCD-matrices for simple interfaces and optical elements with rotational symmetry. |
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
E ect |
Figure |
|
|
|
|
|
|
ABCD-matrix |
|
Remark |
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Propagation |
|
|
|
|
|
|
|
|
|
|
|
|
1 d |
|
|
|
|
The rays propagate from I to O |
|
|
|
|
|
d |
|
|
|
|
|
|
0 1 |
|
|
|
|
within the same medium. |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
l |
|
|
|
|
|
|
|
|
O |
|
|
|
|
|
|
|
||
Spherical |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
0 |
|
|
Sign: r > 0 for convex surface seen |
||
surface |
|
|
|
|
|
|
|
r |
|
|
n1 − n2 |
n1 |
|
by the propagating light. |
|||||
n |
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
n |
|
|
|
|
|
|
|
|
|
||||||
|
|
|
1 |
|
|
|
2 |
|
|
|
|
|
|
n2 r |
n2 |
|
|
I O
Plane |
|
1 |
0 |
|
|
0 |
n1 |
||
n1 |
n2 |
|
n2 |
|
I |
O |
|
|
|
Corresponds to a spherical surface with r ∞ .
Planar plate |
|
|
0 |
n1 |
|
Contains two refractions. |
|
d |
1 |
|
|||
|
|
1 |
n2 d |
|
|
|
n1 |
n2 |
n1 |
|
|
|
|
IO
Thin lens |
|
r1 |
|
|
|
r2 |
|
|
I |
O |
|
|
n1 |
n2 |
n1 |
Thick lens |
|
|
|
in air |
r1>0 |
r2<0 |
|
|
t |
|
|
|
n |
|
|
|
sH |
s’H ’ |
|
IH H’ O
Spherical |
r |
|
mirror |
|
substituted |
|
|
by |
|
I =O |
I O |
Gradient- |
|
n |
|
index lens |
n1 |
||
n1 |
|||
or |
|||
|
|
||
thermal |
|
t |
|
lens |
I |
||
O |
|||
|
|
|
1 |
|
0 |
|
|
|
|
|
|
|
1 |
= |
n2 − n1 |
|
1 |
|
|
1 |
|
, |
|
||||||||||||||
|
|
1 |
|
1 |
|
|
|
|
|
|
f |
|
|
|
|
n1 |
|
r1 |
− r2 |
|
|
|
||||||||||||||
|
− |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
f |
|
|
|
|
|
|
|
air: n1 = 1 . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
1 |
|
|
|
sH |
|
d |
|
|
1 |
= (n |
|
|
1) |
1 |
|
|
1 |
|
+ |
(n − 1)2 t |
, |
||||||||||||||
|
|
|
|
|
|
nsH |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
− |
|
1f |
|
f |
|
|
|
|
− |
|
r1 − r2 |
n r1 r2 |
|||||||||||||||||||||||
|
|
|
− |
|
|
1 + |
|
|
|
|
|
|
|
|
|
|
(n |
|
1) f t |
|
|
|
|
|
|
|
|
|||||||||
|
|
f |
|
|
f |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
sH = |
− |
|
|
|
− |
|
|
|
|
|
, see (3.1.96) , |
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n r2 |
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
s |
H |
= |
− |
(n − 1) f t |
, see (3.1.97) , |
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n r1 |
|
|
|
|
|
|
|
|
1 0 − 2r 1
C D |
|
|
|
|
1 |
|
|
|
|
2γ t / n0 2γ ; |
|||||||||
A B |
|
|
A = cos |
|
√2γ t ; |
|
√ |
|
|
|
|||||||||
|
2 |
|
− |
|
|
|
|
|
|
|
1 |
|
|
|
|||||
|
|
|
|
0 |
|
|
|
|
|||||||||||
|
|
B = n |
|
sin |
√ |
|
|
|
|
||||||||||
|
− |
|
D = |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
2γ t ; |
√2γ t |
||||||||||||
|
|
|
C = |
|
|
√2γ n /n |
sin |
; |
|||||||||||
n = n0 (1 γ x ) ; |
|
cos |
|
√ |
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
γ > 0 : higher |
|
development |
|
of |
the |
trigonometric |
|||||||||||||
index on axis |
|
functions for |
√ |
|
t 1 simpli- |
||||||||||||||
|
2γ |
fications
Gradient optics:
see [02Gom, 05Gro1].
(continued)
Landolt-B¨ornstein
New Series VIII/1A1