Файл: Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 913
Скачиваний: 0
Ref. p. 131] |
3.1 Linear optics |
107 |
|
|
|
|
Elementary |
|
|
waves |
|
|
se |
Extra- |
|
Rays |
ordinary |
|
so |
|
|
Wavefronts |
|
|
|
Ordinary |
|
Optical |
|
|
axis |
|
Index n |
Indices no and ne |
Index n |
|
x |
|
|
Optical axis |
k oII |
so |
|
|
|
k e |
|
|
|
|
|
|
|
|
se |
|
o |
|
|
|
|
|
e |
|
|
|
ew |
|
|
|
z |
|
|
|
|
k II s |
|
|
|
Index n |
Indices no and ne |
Fig. 3.1.28. Huygens’ tangent construction of bire- |
Fig. 3.1.29. Refraction for normal and ray direc- |
|||||||||||
fringence in a crystal slab for transversal-limited |
tions. η : angle between z-axis and optical axis. |
|||||||||||
beams. |
|
|
|
|
|
|
|
|
|
|
|
|
Θe = arcsin (n sin Θ/nΘ e) , |
(3.1.88) |
|||||||||||
Θew = arctan |
tan η − C |
|
|
|
(3.1.89) |
|||||||
|
|
|
|
1 + C tan η |
|
|
|
|
|
|||
with |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
n2 |
|
nΘ2 e |
− |
n2 sin2 Θ tan η + n sin Θ |
|||||||
C = |
o |
× |
|
|
|
|
|
|
. |
|||
n2 |
|
|
|
|
||||||||
2 |
− n2 sin |
2 |
|
|
|
|||||||
|
e |
|
nΘ e |
|
Θ − n sin Θ tan η |
Application: Θe, Θo, no, and nΘ e phase di erences (interferences) and reflection coe cient, Θo and Θew ray separation in a crystal.
Example 3.1.13. Calcite: no = 1.658, ne = 1.486, η = 45◦: #1: Θ = 0◦: C = 1.244822, nΘ e = 1.565,
Θo = Θe = 0◦, Θew = −6.224◦; #2: Θ = 45◦: nΘ e = 1.636, C = 0.438329, Θo = 25.23◦, Θe = 25.6◦, Θew = 21.33◦.
General formulation of (3.1.85)–(3.1.89): see [76Fed, Table 9.1] for more detailed discussions.
3.1.5.8 Photonic crystals
Starting with the forbidden (stop) bands in case of multi-layer Bragg reflection [88Yeh, p. 123] a material class is under development which stops light propagation along as many directions and for as many wavelengths as possible. This suppresses the spontaneous emission for laser applications and opens new possibilities in the microand nano-optics [95Joa, 01Sak, 04Bus]. Photonic crystal fibers [04Bus] can be designed for special light propagation properties and high-power fiber lasers [03Wad].
Landolt-B¨ornstein
New Series VIII/1A1
108 |
3.1.6 Geometrical optics |
[Ref. p. 131 |
|
|
|
3.1.5.9 Negative-refractive-index materials
The common excitation of electrical dipoles and magnetical dipoles by light in a medium can result in a negative dielectric permittivity Re (ε) < 0 in combination with a negative magnetic permeability Re (µ) < 0 . Then, in Snell’s law (3.1.72) an e ective index nˆ < 0 is possible [68Ves] which results in imaging by a slab of this material without curved surfaces [00Pen] and other interesting e ects [05Ram]. Such metamaterials can be generated by microtechnology, now for mmand terahertz-waves, but with the trend towards visible radiation [05Ele].
3.1.5.10 References to data of linear optics
[62Lan] contains optical constants, only. In later editions, the optical constants are listed together with other properties of substances. An overview is given in the content volume [96Lan].
Optical glass: |
[62Lan, Chap. 283], [97Nik], [95Bas, Vol. 2, Chap. 33], cat- |
|
alogs of producers: [96Sch, 98Hoy, 96Oha, 92Cor], and com- |
|
mercial optical design programs. |
Infrared materials: |
[98Pal, 91Klo], [96Sch, infrared glasses], commercial optical |
|
design programs. |
Crystals: |
[62Lan, Chap. 282], [95Bas, Vol. 2, Chap. 33], [97Nik, 91Dmi, |
|
81Kam]. |
Photonic crystals: |
[95Joa, 01Sak, 04Bus]. |
Negative-refractive-index materials: |
[05Ram]. |
Polymeric materials: |
[62Lan, Chap. 283], [95Bas, Vol. 2, Chap. 34], [97Nik]. |
Metals: |
[62Lan, Chap. 281], [98Pal], [95Bas, Vol. 2, Chap. 35]. |
Semiconductors: |
[96Lan, 98Pal, 87EMI], [95Bas, Vol. 2, Chap. 36]. |
Solid state laser materials: |
[01I , 97Nik, 81Kam]. |
Liquids: |
[62Lan, Chaps. 284, 285], [97Nik]. |
Gases: |
[62Lan, Chap. 286]. |
3.1.6 Geometrical optics
Geometrical optics represents the limit of the wave optics for λ 0 .
The development sin σ = σ − 3!1 σ3 + 5!1 σ5 − . . . with σ the angle in Snell’s law characterizes the di erent approaches of geometrical optics. Table 3.1.10 gives an overview of di erent approximations of geometrical optics.
3.1.6.1 Gaussian imaging (paraxial range)
The signs of the parameters determined in [03DIN, 96Ped] are applied in Sect. 3.1.6.1.1, later on f = f is used.
Landolt-B¨ornstein
New Series VIII/1A1
Ref. p. 131] |
3.1 Linear optics |
109 |
|
|
|
Table 3.1.10. Di erent approximations of geometrical optics.
Problem to be treated |
|
|
|
Algorithm for solving |
|
|
|
|
|
Given: object point O in the paraxial range, |
– Gaussian collineation and Listing’s construction: |
|||
asked : image point O in the paraxial range |
see Sect. 3.1.6.1. |
|||
approximation: sin σ ≈ σ . |
|
|
|
– Gaussian matrix formalism (ABCD-matrix): see |
|
|
|
|
Sect. 3.1.6.2, |
|
|
|
|
ref.: [04Ber, 99Bor]. |
Imaging in Seidel’s range, |
|
|
|
Formulae for Seidels aberrations: see Sect. 3.1.6.3, |
asked : imaging quality |
1 |
|
ref.: [70Ber, 80Hof, 84Haf, 84Rus, 86Haf, 91Mah]. |
|
approximation: sin σ ≈ σ − |
σ3 . |
|
||
|
|
|
||
3! |
|
|||
General image formation. |
|
|
|
(Commercial) raytracing programs with geometric |
|
|
|
|
and wave optical merit functions and tolerancing, |
|
|
|
|
ref.: [84Haf, 86Haf]. |
|
|
|
|
|
3.1.6.1.1 Single spherical interface
Figure 3.1.30 shows the imaging by a spherical interface in the paraxial range (small x, x , h).
Gaussian imaging equation:
n |
|
1 |
1 |
= n |
1 |
1 |
|
or |
n |
= |
n |
+ |
n − n |
. |
(3.1.90) |
||||
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
r |
− s |
r |
− s |
|
s |
s |
|
||||||||||||
|
|
|
|
|
r |
|
Abbe’s invariant n |
1 |
1 |
is a constant on both sides of the interface. |
|||||||
|
− |
|
||||||||
r |
s |
|||||||||
Object-space focal length: |
|
|||||||||
f = − |
|
nr |
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
n |
− |
n |
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
Image-side focal length: |
|
|||||||||
f = |
|
n r |
|
. |
|
|
|
|
||
n |
− n |
|
|
|
|
(3.1.91)
(3.1.92)
Remark : The symbol f means outside this section, Sect. 3.1.6.1, the positive focal length for a positive (converging) lens.
Newton’s imaging equation:
z z = f f . |
(3.1.93) |
|
|
x |
|
|
|
|
|
|
|
|
P |
|
|
|
|
O |
x |
|
h |
r |
M |
|
|
|
|
|
|
|
|
z |
|
|
F |
V |
|
|
F ’ |
x ’ |
|
|
s |
|
|
|
s ’ |
|
O ’ |
|
f |
|
|
|
|
||
|
z |
|
|
f ’ |
z ’ |
|
|
|
|
|
|
|
Fig. 3.1.30. Imaging by a spherical interface in the paraxial range (small x [object height], x [image height], h [zonal height]). Full line: axial imaging,
dashed line: o -axis imaging, dotted line: focusing to image side F . Sign conventions: s, s > 0 , if they
point to the right-hand side of the vertex V , r > 0 , if the center of curvature of the interface is on the right-hand side in comparison with V . Here: s < 0, s > 0, r > 0. M : center of curvature of the sphere. The left-hand-side-directed arrows symbolize negative values for the corresponding parameters here.
Landolt-B¨ornstein
New Series VIII/1A1