ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.06.2024
Просмотров: 540
Скачиваний: 0
СОДЕРЖАНИЕ
Более элементарные по сравнению с атоллами
Осколки частиц, или Трудное разделение
Физика возвращается к повседневным заботам
Теория наносит ответный удар: объединение
Теневая сторона стандартной модели
Проблема происхождения массы, известная как проблема полей Хиггса
Решение головоломки: как, кто, где и когда?
Предположения о происхождении жизни
Нынешняя жизнь: клеточные структуры
Решение головоломки: как, кто и почему?
Секвенирование генома человека
Решение головоломки: почему, как, кто и где, когда?
Получение или утрата атмосферного газа
Погода и климат: гипотезы (весьма добротные), прогнозы (не столь добротные)
Решение головоломки: как и где?
Измерение межзвездных расстояний
Галактики: первые теории и наблюдения
Космологический вклад Эйнштейна
Чем крупнее телескопы, тем больше расстояния до звезд
Одна большая Галактика или многочисленные обособленные галактики
Столкнувшись с неожиданным: ускорение Вселенной
В темноте рассуждать о темной энергии
Решение головоломки: где, когда, как и кто?
2. Какова доля таких звезд, имеющих планеты ?
3. Какова доля планет, обращающихся вокруг своих звезд в пределах, где возможно зарождение жизни ?
4. Какова доля благоприятно расположенных планет, где действительно зародилась жизнь?
5. Какова доля форм жизни, приведших к возникновению разума ?
7. В течение скольких лет разумная цивилизация передает в космос поддающиеся обнаружению сигналы?
13 .Предсказание землетрясений
15. Труды Эйнштейна: помимо теории относительности
Глава 2. Физика. Почему одни частицы обладают массой, а другие нет?
Глава 3. Химия. Какого рода химические реакции подтолкнули атомы к образованию первых живых существ?
Глава 4. Биология. Каково строение и предназначение протеома?
Глава 5. Геология. Возможен ли точный долговременный прогноз погоды?
Глава 6. Астрономия. Почему Вселенная расширяется со все большей скоростью?
4. Внеземная жизнь
Я говорил о летающих тарелках со множеством людей. Мне было любопытно: они настаивали, что такое возможно. И это так. Подобное возможно. Но они не понимают, что вопрос-то не в показе того, возможно такое или нет, а в том, существует это или нет.
Ричард Ф. Фейнман, физик, Нобелевский лауреат
Ученых, как и всех, будоражит возможность существования внеземной жизни. Однако действительность такова, что, помимо представлений на кино- и телеэкране, на страницах книг, на сайтах Всемирной Паутины и бесчисленного числа рассказов «очевидцев», нет ни одного научного свидетельства наличия жизни вне Земли. Тем не менее научныепоиски ведутся на обоих фронтах, теоретическом и экспериментальном.
Теоретические поиски
Какие формы жизни возможны?
♦ Жизнь на углеродной основе, подобно нашей. Выражая мнение большинства, покойный химик Сирил Поннамперума из Мэрилендского университета полагал, что химия живого на Земле может быть обобщена на всю Вселенную. По его словам, данные «свидетельствуют, что создание и соединение кирпичиков жизни (аминокислот и нуклеотидов), похоже, было неизбежным, стоило лишь заработать химической печи земного "первичного бульона"», и «в случае существования жизни где-то еще на просторах Вселенной в химическом от ношении она была бы крайне схожей с жизнью на Земле».
Большинство ученых соглашаются, что, несмотря на образ пучеглазых зеленых пришельцев, насаждаемый производителями игрушек, любая внеземная форма жизни будет существенно разниться от людей. Однако некоторые структурные и функциональные составляющие могут оказаться общими. Например, подобные глазам датчики для восприятия фотонов (возможно, в невидимой области спектра), два подобных глазам датчика для определения расстояния и кратчайший путь к устройству обработки данных от датчиков (мозгу) представляются схожими. Далее, вполне уместно компактное телесное устройство, включающее конечности для управления окружающими предметами и отдельные приспособления для передвижения. В некотором отношении голливудский образ пришельца может оказаться не столь далеким от действительности.
♦ Жизнь не на углеродной основе. Помимо углерода остовом жизни может вполне послужить расположенный в таблице Менделеева как раз под ним кремний. После того как эту связь заметили в 1890-е годы, романист Г. Уэллс писал: «Какие фантастические картины предстают при подобном предположении: образы кремнеалюминиевых организмов —а почему бы и не кремнеалюминиевых людей, бродящих посреди атмосферы из газообразной серы, скажем, вдоль моря, где плещется жидкое железо при температуре доменной печи в несколько тысяч градусов».
Действительно, химические свойства кремния и углерода во многом сходны. Например, углерод при соединении с четырьмя атомами водорода образует метан (СН4), тогда как кремний дает в этом случае силан (SiH4). Химическое взаимодействие кремния с кислородом тоже роднит их (СО2 и SiO2), но наблюдается и существенное различие. Двуокись кремния образует трехмерную решетку, ее крепкие связи делают SiO2 твердым (песок), даже при высоких температурах.
В биохимии углеродной жизни энергия черпается из длинных углеводных цепей, которые разрываются посредством белковых ферментов-катализаторов. Отходами при этом являются вода и углекислый газ, которые легко выводятся из организма, поскольку находятся соответственно в жидком и газообразном состоянии. Кремниевой жизни пришлось бы иметь дело с твердыми отходами, удаление которых сопряжено с трудностями.
К тому же углеродные биологически важные молекулы обладают таким свойством, как хиральность (см. гл. 3), иначе говоря, трехмерность связей заставляет их при образовании спирали закручиваться либо вправо, либо влево. Данное свойство обеспечивает метаболизму гибкость, чего будет лишена кремниевая жизнь, у которой склонность к хиральности проявляется значительно слабее.
Наконец, распространенность. В 2002 году в космосе удалось обнаружить 113 углеродных молекул, тогда как кремниевых оказалось всего 10. Если и существуют формы жизни на основе кремния, похоже, они будут занимать значительно меньшую нишу по сравнению с углеродной жизнью.
Итак, насколько вероятно существование внеземных цивилизаций? В ноябре 1961 года Национальная академия наук организовала неофициальную встречу в местечке Грин-Банк, штат Западная Виргиния, по вопросу внеземной жизни. Радиоастроном из Национальной радиоастрономической обсерватории Фрэнк Дрейк привел уравнение, ставящее вероятность существования внеземной жизни в зависимость от ряда сомножителей, определяемых отдельно. Данное уравнение, названное Дрейком уравнением Грин-Банк, стало общепризнанным и было переименовано в уравнение Дрейка:
Число внеземных цивилизаций = (рождаемые за год звезды) х
х (f планет) х (f жизненной зоны) х (f жизни) х (f разума) х
х (f межзвездной связи) х (время жизни).
Для оценки количества «сообщающихся» цивилизаций (которые посылают и принимают послания) в галактике Млечный Путь необходимо прежде оценить семь сомножителей, где/принимают значения от 0 до 1.
1. Какова скорость образования в нашей Галактике звезд, подходящих для создания пригодных для жизни планет ?
Большие звезды слишком недолговечны, а малые чересчур холодны, так что остаются лишь звезды средней величины.
2. Какова доля таких звезд, имеющих планеты ?
Согласно нынешнему уровню понимания процесса образования звезд, вполне вероятно, что вокруг большинства таких звезд могли бы обращаться планеты.
3. Какова доля планет, обращающихся вокруг своих звезд в пределах, где возможно зарождение жизни ?
На Земле решающее значение имеет наличие свободной воды в жидком состоянии. Венера для этого слишком жаркая, а Марс слишком холоден, так что в нашей Солнечной системе лишь одна планета находится в жизненной зоне — Земля. Большое значение могла иметь и Луна. Приливно-отливные явления способны повлиять на зарождение жизни, заставляя то наполняться, то высыхать водоемы, приводя к образованию «первичного бульона» нужной концентрации.
Неведомую пока роль в становлении жизни могли сыграть большие внешние планеты, особенно Юпитер, отводя идущие к внутренним планетам астероиды или кометы. Такой «громоотвод» защитил Землю от нежелательных воздействий, которые могли замедлить или даже прервать ход жизни.
4. Какова доля благоприятно расположенных планет, где действительно зародилась жизнь?
Оценка данного множителя делит людей на пессимистов и оптимистов. Некоторые, например Нобелевский лауреат бельгийский биохимик Кристиан Де Дюва, полагают, что при достаточном количестве углерода и воды в жидком состоянии, соответствующей температуре и достаточном сроке зарождение жизни неизбежно. Другие приводят массу примеров всевозможных тонкостей в устройстве даже одноклеточного организма и говорят, что жизнь — крайне редкое событие, возможно, даже единственное в своем роде. Ученые расходятся в оценках данного множителя. Некоторые вообще сомневаются в целесообразности подобного подхода ввиду столь больших разногласий. И все же в отсутствие свидетельств это лишь предположение, которое не стоит воспринимать слишком уж всерьез.
5. Какова доля форм жизни, приведших к возникновению разума ?
На Земле многие виды выказывают разумное поведение, порой это относится и к людям. Поскольку разум показывает незаурядную способность к выживанию, то, пожалуй, при достаточном сроке он может развиться у многих форм жизни.
6. Какова доля разумных форм жизни, способных создать технические средства для передачи поддающихся обнаружению сигналов?
И люди, и дельфины представляют разумные формы жизни на Земле, но только разработанные человеком технические средства издают поддающиеся обнаружению сигналы, так что для данной оценки обычно берут величину от 0,05 до 0,5.
7. В течение скольких лет разумная цивилизация передает в космос поддающиеся обнаружению сигналы?
Данная оценка может служить очередным пробным камнем для выявления оптимистов и пессимистов. Оптимисту видится цивилизация в миллионы лет, тогда как пессимист, глядя на нашу цивилизацию, говорит о близком конце. Не забывайте, что уравнение Дрейка составлялось для радиоастрономии. Цивилизация могла оставить радиопозывные, создав более действенные средства, или же вообще забросить радио, найдя более интересные занятия. Что касается нас, мы стали передавать радиопозывные чуть более 100 лет назад, так что самые ранние из этих посланий углубились в космос на расстояние 100 световых лет.
Перемножение всех этих сомножителей дает оценку общего числа «сообщающихся» цивилизаций в галактике Млечный Путь, которая колеблется от миллиардов (у оптимистов) до одной — нашей с вами. У Дрейка эта величина составляла 10 тыс. Современные оценки часто сводятся к числу «сообщающихся» цивилизаций, примерно равному количеству лет, в течение которых цивилизация передает поддающиеся обнаружению сигналы.
Некоторые считают, что уравнение Дрейка — лишь краткое выражение нашего неведения, однако полезно поразмышлять над каждым из сомножителей. К тому же уравнение позволяет получить еще одну оценку: среднего расстояния между «сообщающимися» цивилизациями. При всех пессимистичных или оптимистичных оценках семи перечисленных сомножителей среднее расстояние между «сообщающимися» цивилизациями в галактике Млечный Путь составляет от сотен до тысяч световых лет. Если путешествие света от одной цивилизации к другой займет несколько сотен лет, то связь между ними займет больше времени, чемвыход скрипучих старых модемов в Интернет, если вы еще это помните. И все же для насчитывающей миллионы лет технически развитой, ширящейся цивилизации с ее стремлением заселить Галактику путешествие в тысячу лет к новому миру — не такое уж и безрассудство.
С учетом того, что Солнечная система существует лишь последнюю треть жизни Галактики, многие звезды имеют довольно большую фору. Возможно, там уже достигли нужного технического уровня развития и принялись заселять Галактику. Принимая в расчет размеры Галактики и допустимую скорость тамошних космических кораблей, вполне вероятно, что подобный план можно было бы осуществить за 2 млн лет. Такой срок велик в отношении жизни отдельного человека, но мал по сравнению с возрастом Галактики. Иначе говоря, технически передовые цивилизации вполне могли бы заселить Галактику в духе «звездного пути», «звездных войн» или иных научно-фантастических произведений.