Файл: Пять нерешенных проблем науки.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.06.2024

Просмотров: 575

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Наука ≠ техника

Научный метод в действии

Нерешенные проблемы

Более элементарные по сравнению с атоллами

Спасительные космические лучи

Четыре силы

Осколки частиц, или Трудное разделение

Вмешательство политики

Физика возвращается к повседневным заботам

Появление кварков

Теория наносит ответный удар: объединение

Стандартная модель

Проверка стандартной модели

Теневая сторона стандартной модели

Проблема происхождения массы, известная как проблема полей Хиггса

Нужна новая физика

Необходим новый язык?

Решение головоломки: как, кто, где и когда?

Становление химических систем

Предположения о происхождении жизни

Нынешняя жизнь: клеточные структуры

Отправления клетки

Предсолнце

Наше Солнце

Появление рнк

Рнк-мир

Альтернативы рнк-миру

Сложности

Решение головоломки: как, кто и почему?

Биология

E. Coli

Опероны е. Coli

Оперон днк — рнк — белки

От прокариот к эукариоталл

Модельные организмы

Физика — биология — химия

Секвенирование генома человека

Угроза патентования

Секвенирование дроблением

План на вторую половину игры

Последствия и бедствия

Решение головоломки: почему, как, кто и где, когда?

Глава пятая Геология

Погода на Земле

Воздух местного производства

Получение атмосферного газа

Потеря атмосферного газа

Получение или утрата атмосферного газа

Погода и климат: гипотезы (весьма добротные), прогнозы (не столь добротные)

Решение головоломки: как и где?

Астрономия

Содержимое Вселенной

Измерение межзвездных расстояний

Галактики: первые теории и наблюдения

Космологический вклад Эйнштейна

Чем крупнее телескопы, тем больше расстояния до звезд

Одна большая Галактика или многочисленные обособленные галактики

Вселенная галактик

Столкнувшись с неожиданным: ускорение Вселенной

В темноте рассуждать о темной энергии

Решение головоломки: где, когда, как и кто?

1. Антивещество

2. Ускорители

4. Внеземная жизнь

1. Какова скорость образования в нашей Галактике звезд, подходящих для создания пригодных для жизни планет ?

2. Какова доля таких звезд, имеющих планеты ?

3. Какова доля планет, обращающихся вокруг своих звезд в пределах, где возможно зарождение жизни ?

4. Какова доля благоприятно расположенных планет, где действительно зародилась жизнь?

5. Какова доля форм жизни, приведших к возникновению разума ?

6. Какова доля разумных форм жизни, способных создать технические средства для передачи поддающихся обнаружению сигналов?

7. В течение скольких лет разумная цивилизация передает в космос поддающиеся обнаружению сигналы?

5. Аминокислоты

6. Построение модели днк

7. Кодоны

8. Укладка белков

10. Парниковые газы

11. Земля: история недр

12. Теория хаоса

13 .Предсказание землетрясений

15. Труды Эйнштейна: помимо теории относительности

16. «Большой взрыв»

Глава 1. Видение науки

Глава 2. Физика. Почему одни частицы обладают массой, а другие нет?

Глава 3. Химия. Какого рода химические реакции подтолкнули атомы к образованию первых живых существ?

Глава 4. Биология. Каково строение и предназначение протеома?

Глава 5. Геология. Возможен ли точный долговременный прогноз погоды?

Глава 6. Астрономия. Почему Вселенная расширяется со все большей скоростью?

Небольшая подборка использования геномики (а значит, и протеомики) дает представление о нравственной стороне геномики и протеомики (более подробно см.: Список идей, 9. Генетические технологии).


Решение головоломки: почему, как, кто и где, когда?

Почему. Протеомика дает возможность создавать новые, более действенные лекарства и диагностические средства. Однако число пар азотистых оснований, генов и белков, с которыми приходится иметь дело, ставит трудную задачу перед теми, кто исследует, создает и испытывает подобные средства.

Вы только взгляните на эти числа: 3 млрд. пар нуклеотидных оснований, 30 тыс. генов, сотни тысяч белков присутствуют в человеческом организме. Они усложняют и без того трудную задачу, требуя методов по обработке огромных объемов данных. Новая отрасль — биоинформатика вызвала большой наплыв ученых — специалистов по составлению алгоритмов — в качестве равноправных биологов, давая возможность обеспечить их орудиями сбора, упорядочивания и толкования биологически значимых данных. Хотя биоинформатика и может оказаться ключевой в решении общей задачи, не исключено, что объем задачи указывает на ее неразрешимость. Сложность взаимодействий белков делает всю биологическую систему объектом, где крайне малые изменения на входе, легко вызываемые великим множеством обычных в таком деле возмущающих факторов, неизбежно приводят к совершенно неожиданным последствиям (подобный вопрос встает в гл. 5 о предсказании погоды).

Некоторым образом данная проблема перекликается с проблемой в физике, где отдельные частицы образуют совокупности, поведение которых предсказывается на основе вероятностных методов. Данный подход, именуемый статистической механикой, доказал свою действенность. В физике частицы одинаковы и по численности значительно превосходят биологические молекулы, так что законы больших чисел обеспечивают сходство. Биологические системы имеют дело с неодинаковыми единицами, и их число существенно меньше, например, количества атомов в содержащемся в комнате воздухе. Поэтому выгоды, получаемые от использования статистики, нельзя применить к решению этой задачи. Возможно, будет создан новый вид статистической математики. И биоинформатика, похоже, та область, где это может произойти.

Кто и где. Другая возможность состоит в том, что биологии поможет очередной наплыв ученых из других отраслей знаний, или же координаторы более обширных проектов вроде Ф. Коллинза, либо неуемные одиночки вроде Дж. Крей-га Вентера. Помимо Celera в список компаний, включившихся ныне в исследования по протеомике, входят Cellzome из Германии, Hybrigenics из Франции и MDS Proteomics из Канады.


Когда. По мнению профессора фармацевтической химии Олме Берлингейма из Калифорнийского университета в Сан-Франциско, «мы сейчас имеем возможность значительно быстрее определять состав белка в человеческом организме. Работа должна завершиться за пару лет».

Ученые при определении белков, входящих в те или иные клетки или ткани, обычно прибегают к двум основным способам: двухмерному гель-электрофорезу и масс-спектрометрии. Некоторые компании пытаются по возможности усовершенствовать и автоматизировать эти и другие методы.

Представляется, что после установления устройства человеческого генома и изучения всех его признаков данный узел удастся развязать, и останется лишь воспользоваться найденными закономерностями для выяснения подробностей. Но это не так. Новые сведения о геноме уже преподнесли немало неожиданностей. Поэтому не стоит удивляться очередным открытиям.


Глава пятая Геология

Возможен ли точный долговременный прогноз погоды?

Прогноз погоды на ночь: темень.

Джордж Карлин

[выдающийся американский комик]

Все любят говорить о погоде, но никто не пытается ее изменить.

Марк Твен

Изучение планеты Земля как целого — прерогатива геологии (науки о Земле). Модель плитотектоники нашей планеты довольно хорошо описывает следствия взаимодействий ее самых верхних, четырех твердых и жидкой оболочек. Однако атмосфера Земли, особенно ее синоптическое состояние, похоже, перечеркивает все попытки создать модели, которые давали бы надежные долговременные прогнозы. Раз погода оказывается столь отличительной чертой нашей планеты, нахождение подходящей модели для предсказания погоды оказывается крупнейшей нерешенной задачей науки о Земле.

Погода на Земле

Преимущественно ясно, отчасти облачно, порой дожди, возможен снег, ожидается ухудшение погоды... Не удивляло ли вас, что синоптики заимствовали свой двусмысленный язык у тех, кто занимается составлением гороскопов? Что же говорить о Календаре крестьянина14, предсказывающем погоду на год вперед, или об ушибленном колене вашей тетушки, которое начинает неизменно крутить с приближением ненастья?

Погода и ее прогноз всегда играли огромную роль в выживании людей. Самые древние ссылки на погоду обычно связаны с религией или фольклором.

Религия египтян с ее небесными божествами включала обряды по призыванию дождя еще за 3500 до н. э. Вавилоняне (3000-300 до н. э.) связывали небесные тела с погодными явлениями, полагая, что темное кольцо вокруг Луны означало приближение дождя. Древние греки накопили наблюдения за погодой и создали теории, нашедшие воплощение в Метеорологике Аристотеля (340 до н. э.), где были собраны прежние представления, приведенные в согласие с господствовавшим тогда учением о четырех стихиях (земле, воде, огне и воздухе). После научного переворота 1600-х годов построения Аристотеля были наконец подвергнуты проверке, и утвердилось представление о всеобщем характере погоды и климата.

В Новое время изучение атмосферных условий стало неотъемлемой частью науки о Земле. Атмосфера представляет собой ее внешнюю оболочку. Остальные четыре оболочки — внутреннее и внешнее ядро, мантия и кора — суть медленно перемещающиеся твердые и жидкие тела. Из-за газообразности атмосферной оболочки она меняется быстрее всего.


Прогноз погоды на Земле

Иногда, частично, большей частью, или совершенно ясно, или облачно с меняющейся вероятностью дождя, снега, града, мокрого снега, смерча, урагана...

Температура: максимальная +58°С,

минимальная -84°С.

Давление: 1 атмосфера +/—10%.

Влажность: от 0 до 100%.

Ветер: от нуля до 231 мили в час (возможно, выше при смерче).

Видимость: от нуля до полной.

Осадки: от нуля до 523 дюймов воды в год.

Вероятность грозы:переменная.

Конкретный прогноз зависит от места и времени года.

Пользуясь научным подходом, мы уже достаточно долго наблюдаем за атмосферой и собрали значительное количество данных. В гипотезах, стремящихся объяснить поведение атмосферы, используются зарекомендовавшие себя понятия механики жидкостей и газов, термодинамики, астрономии Солнца, химии и иных дисциплин. Тогда почему же прогнозы погоды, подобно рыбе и отношению к визитам родственников, портятся столь скоро? Иначе говоря, почему точный долгосрочный прогноз погоды все еще оказывается нерешенной задачей?

Ответ один: размеры и сложный характер атмосферы. Оказывается, при достижении системой определенного уровня сложности математическое предсказание начинает столь сильно зависеть от начальных условий, что малейшие изменения приводят к совершенно неожиданным конечным результатам. Сжатое изложение такой восприимчивости к начальным условиям именуют теорией хаоса, под которой часто ошибочно подразумевают полный произвол. Прежде чем вдаваться в подробности данной проблемы и рассматривать пути ее решения, рассмотрим для сравнения погоду соседних планет, изучим становление земной атмосферы, выдвинем гипотезы прогноза погоды и проследим за истоками, развитием теории хаоса и выявим ее уместность. Наконец, займемся вопросом, возможно ли теоретически прогнозирование погоды с помощью современных математических методов.

Погода на наших соседних планетах: трава не вечно зеленеет

Атмосфера представляет собой газовую оболочку, окружающую твердую (и/или жидкую) поверхность планеты. Атмосфера газовых гигантов — Юпитера, Сатурна, Урана и Нептуна — наиболее отличительная их черта. Все твердые части этих планет погребены под толстым слоем газа. Другие небесные тела нашей Солнечной системы — Меркурий, Плутон и Луна — вовсе или почти не обладают атмосферой. На оставшихся трех планетах — Венере, Земле и Марсе — плотность газа колеблется от крайне высокой до весьма малой, подобно рассуждениям девочки в сказке о трех медведях.