Файл: Пять нерешенных проблем науки.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.06.2024

Просмотров: 462

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Наука ≠ техника

Научный метод в действии

Нерешенные проблемы

Более элементарные по сравнению с атоллами

Спасительные космические лучи

Четыре силы

Осколки частиц, или Трудное разделение

Вмешательство политики

Физика возвращается к повседневным заботам

Появление кварков

Теория наносит ответный удар: объединение

Стандартная модель

Проверка стандартной модели

Теневая сторона стандартной модели

Проблема происхождения массы, известная как проблема полей Хиггса

Нужна новая физика

Необходим новый язык?

Решение головоломки: как, кто, где и когда?

Становление химических систем

Предположения о происхождении жизни

Нынешняя жизнь: клеточные структуры

Отправления клетки

Предсолнце

Наше Солнце

Появление рнк

Рнк-мир

Альтернативы рнк-миру

Сложности

Решение головоломки: как, кто и почему?

Биология

E. Coli

Опероны е. Coli

Оперон днк — рнк — белки

От прокариот к эукариоталл

Модельные организмы

Физика — биология — химия

Секвенирование генома человека

Угроза патентования

Секвенирование дроблением

План на вторую половину игры

Последствия и бедствия

Решение головоломки: почему, как, кто и где, когда?

Глава пятая Геология

Погода на Земле

Воздух местного производства

Получение атмосферного газа

Потеря атмосферного газа

Получение или утрата атмосферного газа

Погода и климат: гипотезы (весьма добротные), прогнозы (не столь добротные)

Решение головоломки: как и где?

Астрономия

Содержимое Вселенной

Измерение межзвездных расстояний

Галактики: первые теории и наблюдения

Космологический вклад Эйнштейна

Чем крупнее телескопы, тем больше расстояния до звезд

Одна большая Галактика или многочисленные обособленные галактики

Вселенная галактик

Столкнувшись с неожиданным: ускорение Вселенной

В темноте рассуждать о темной энергии

Решение головоломки: где, когда, как и кто?

1. Антивещество

2. Ускорители

4. Внеземная жизнь

1. Какова скорость образования в нашей Галактике звезд, подходящих для создания пригодных для жизни планет ?

2. Какова доля таких звезд, имеющих планеты ?

3. Какова доля планет, обращающихся вокруг своих звезд в пределах, где возможно зарождение жизни ?

4. Какова доля благоприятно расположенных планет, где действительно зародилась жизнь?

5. Какова доля форм жизни, приведших к возникновению разума ?

6. Какова доля разумных форм жизни, способных создать технические средства для передачи поддающихся обнаружению сигналов?

7. В течение скольких лет разумная цивилизация передает в космос поддающиеся обнаружению сигналы?

5. Аминокислоты

6. Построение модели днк

7. Кодоны

8. Укладка белков

10. Парниковые газы

11. Земля: история недр

12. Теория хаоса

13 .Предсказание землетрясений

15. Труды Эйнштейна: помимо теории относительности

16. «Большой взрыв»

Глава 1. Видение науки

Глава 2. Физика. Почему одни частицы обладают массой, а другие нет?

Глава 3. Химия. Какого рода химические реакции подтолкнули атомы к образованию первых живых существ?

Глава 4. Биология. Каково строение и предназначение протеома?

Глава 5. Геология. Возможен ли точный долговременный прогноз погоды?

Глава 6. Астрономия. Почему Вселенная расширяется со все большей скоростью?

Закись азота составляет 6% парниковых газов и выделяется естественным путем океаном и в результате почвенной деятельности бактерий. Человек привносит закись азота посредством азотных удобрений, установок по очистке сточных вод и выхлопов легковых и грузовых автомобилей.

Примерно 5% парниковых газов поставляются источниками человеческой деятельности. Сюда относятся водород-но-фтористый углерод (HFC), перфторированный углерод (PFC) и шестифтористая сера (SF6) 42, используемые в различных промышленных производствах.

Недавние прогнозы по поводу повсеместного потепления пробудили интерес к парниковым газам. Как и в случае с любой общечеловеческой проблемой, здесь имеют место научная, техническая, экономическая и этическая составляющие. Поскольку рассмотрение большей их части выходит за рамки нашей книги, сосредоточим внимание лишь на некоторых научных аспектах, связанных с обсуждением темы погоды в гл. 5.

Сначала рассмотрим рис. 1.6, где приводятся показания температуры за прошлые годы.

На графике видно, что средняя температура у поверхности Земли за последние 100 лет поднялась примерно на 1°F [5/9°С].

Изменения температуры у поверхности Земли

Рис. 1.6. Средняя температура у поверхности Земли

Отступление ледников, таяние ледникового покрова на Северном и Южном полюсах, увеличение испарения и количества осадков и подъем уровня океана служат дополнительными свидетельствами повсеместного потепления в прошлом. Очевидно, Земля становится более теплой.

Но вызван ли такой рост температуры недавним увеличением количества парниковых газов? Взглянем на рис. 1.7.

Содержание в атмосфере трех широко распространенных парниковых газов

Рис. 1.7. Содержание в атмосфере парниковых газов

Финансируемая ООН и состоящая из 2500 ученых Межправительственная комиссия по вопросу изменения климата (1РСС) пришла к заключению, что виной всему парниковые газы (см. узел Всемирной Паутины www.ipcc.ch /).Исходя из значительно большего числа природных источников парниковых газов по сравнению с антропогенными источниками, можно подумать, что рост объемов самих газов обусловлен чем-то иным, помимо деятельности человека. Однако климатологи утверждают, что естественные источники и поглотители примерно уравновешивают друг друга, так что отмеченный рост, вероятно, вызван антропогенными источниками.


Помимо поставки углекислого газа сжиганием ископаемого топлива и древесины большое влияние на состав атмосферы оказывает другой вид человеческой деятельности — вырубка лесов. Заготовка леса и расчистка земли под пашню и пастбища в тропической зоне приводят ежечасно к потере 3500 акров [1 акр = 4046,86 м2] лесных угодий. Углекислый газ поступает в атмосферу при сжигании деревьев, тогда как обезлесение сокращает число имеющихся на Земле поглотителей этого углекислого газа.

Необходимо также изучить долговременный кругооборот атмосферных газов для ответа на вопрос, не носят ли нынешние колебания более длительного характера. На основе изучения осадочных пород выявляются большие циклические изменения в содержании углекислого газа в далеком прошлом, однако данных этих мало и пока неясны причины подобных изменений.

Если тенденция к потеплению продолжится, это приведет ко многим нежелательным последствиям. Помимо очевидного роста уровня океана, что сделает непригодными для обитания некоторые прибрежные районы, а также вызовет увеличение солености пресноводных озер и рек, климат станет более суровым, приведя к человеческим и материальным потерям. Все это отразится на здоровье людей: тропические насекомые и болезни переместятся в умеренную зону; существенно возрастет риск заболевания диабетом, малярией, тепловых ударов, тепловой прострации и одышки.

Как уже говорилось в гл. 5, машинные модели климата содержат много неясного, что связано с трудностями моделирования; изменением солнечной активности; переменчивым характером облачности; сложностью математического аппарата, обусловленной характеризующими климат взаимосвязанными нелинейными переменными, обратной связью; слишком большим размером ячеек [покрывающих синоптический район сетки] и крайне малым количеством данных. Как и в случае с погодой, заключение межправительственной комиссии IPCC основывалось на сборном прогнозе. Предсказывалось неблагоприятное воздействие на здоровье человека, природные экосистемы и земледельческое и приморское население, но с оговоркой ввиду большого числа неучтенных факторов.

Противоположная, достаточно аргументированная точка зрения состоит в том, что нынешнее повсеместное потепление выступает лишь частью некоего более длительного цикла, нам пока не ясного, и любая человеческая деятельность крайне мало отражается на нем.

Долгосрочные действия по уменьшению выброса парниковых газов пока только изучаются, однако неясности научного свойства рисуют перед теми, кто принимает решения, смутную картину — по крайней мере сегодня.


См. узел Американского геофизического общества

www.agu.org/eos_elec/991483.html Для получения самых свежих новостей проводите поиск в Интернете по ключевым словам «парниковые газы» (greenhouse gases) или «глобальное потепление».

В дальнейшем, если развитые страны уменьшат потребление ископаемого топлива и обратятся к возобновляемым источникам энергии типа водяных, ветряных и солнечных, остроту проблемы потепления удастся снять. В Европе используют ядерную энергию, но ее производство и потребление сопряжено с вопросами безопасности и утилизации отходов. Далее, странам третьего мира необходимо снизить уровень рождаемости. Прежде чем проводить в жизнь тот или иной план, следует учесть все этические, экономические и политические факторы.


11. Земля: история недр

В ходе формирования Земли тяготение сортировало первичный материал в соответствии с его плотностью: более плотные составляющие опускались к центру, а менее плотные плавали сверху, образовав в итоге кору. На рис. 1.8 представлена Земля в разрезе.

Кора — внешняя оболочка. Она обладает наименьшей плотностью и расколота на многочисленные тонкие и жесткие каменные плиты, медленно движущиеся ввиду перемещения нижележащей мантии.

Мантия — следующая оболочка. Она самая толстая из всех оболочек, относительно теплая и жидкая по сравнению с корой, имеет горячие точки, порождающие конвекционные потоки (представьте завихрения в закипающей воде, только значительно медленнее движущиеся). Потоки в мантии перемещают плиты, вызывая землетрясения, вулканические извержения, расширение морского дна и дрейф континентов.

Далее идет горячее жидкое внешнее ядро, состоящее из плотного железа и никеля и плещущееся ввиду вращения Земли. Земной магнетизм, возможно, вызван местным движением внутри этой оболочки.

Самая нижняя оболочка именуется внутренним ядром. Она хотя и состоит из расплавленного железа и никеля, из-за огромного давления оказывается твердой и самой плотной оболочкой.

За подробностями процесса создания этой модели и подтверждающими ее опытными данными обращайтесь к нашей книге Пять крупнейших представлений в науке (The Five Biggest Ideas in Science. N.Y.: John Wiley & Sons, Inc., 1997).

Следующие узлы Всемирной Паутины содержат свежую информацию и прекрасные иллюстративные материалы:

www.hartrao.ac.za/geodesy/tectonics.html http://pubs.usgs.gov/peubications/text/dynamic.html www.seismo.unr.edu/ftp/pub/louie/class/100/plate-tectonics.html http://scign.jpl.nasa.gov/lwarn/plate/htm

12. Теория хаоса

О тягость легкости, смысл пустоты! Бесформенный хаос прекрасных форм!


У. Шекспир. Ромео и Джульетта

Как уже говорилось в гл. 5, хаос не следует путать с произволом. Хаос означает скорее чрезвычайную восприимчивость конечного результата к малым изменениям в начальных условиях. Как поется в старой колыбельной:

Не было гвоздя —

Подкова пропала.

Не было подковы —

Лошадь захромала.

Лошадь захромала —

Командир убит.

Конница разбита,

Армия бежит.

Враг вступает

В город,

Пленных не щадя,

Оттого что в кузнице

Не было гвоздя!

[Гвоздь и подкова.

Пер. с англ. С. Маршака]

До 1960-х годов существовал некий сугубо математический метод, как оказалось, связанный с теорией хаоса. Гастон Морис Жулиа, математик из Алжира, после ранения в сражениях Первой мировой войны вынужден был носить на лице кожаную повязку, защищавшую сильно искалеченный нос. Из-за многочисленных операций ему приходилось долго скитаться по госпиталям, где, чтобы как-то скоротать время, он занимался математическими выкладками. В 25 лет он пишет «Записку о приближении рациональных функций». Работу он делал в связи с темой, объявленной в 1915 году Французской академией наук на соискание главной премии 1918 года, которой и удостоился; хотя французский математик и астроном Пьер Жозеф Луи Фату (1878-1929) опубликовал в декабре 1917 года работу на ту же тему, однако Жулиа отослал свою статью в Академию наук раньше. Функция представляет собой математическое правило вычисления наподобие следующего: f(x) = х2 + const. Если х = 2, а const = 3, то значение функции составит 7. Приближение (итерация) осуществляется использованием вычисленного для /значения в качестве следующего значения для х. Итак, если х = 7, то f (х) = 52, и т. д. Жулиа исследовал более сложные выражения. Особо его занимали функции и значения, при которых возможно многократное приближение без бесконечного роста итоговой величины [самой функции]. Значения х, для которых повторяющиеся итерации давали конечный результат, стали именоваться пленниками [обычно говорят о множестве точек притяжения, или аттракторах]. При стремлении к бесконечности итоговых величин их называют «беглецами» [обычно говорят о множестве точек отталкивания, или репеллерах]. Вычисления велись вручную и были крайне трудоемкими даже для простых функций. Хотя Жулиа и обрел некую славу в математических кругах, его труд был основательно забыт, и вспомнили о нем уже в 1970-е годы.