Файл: Пеноуз Роджер. Тени разума. В поисках науки о сознании.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.06.2024

Просмотров: 614

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Роджер пенроуз

1.2. Спасут ли роботы этот безумный мир?

1.3. Вычисление и сознательное мышление

1.4. Физикализм и ментализм

1.5. Вычисление: нисходящие и восходящие процедуры

1.6. Противоречит ли точка зрения в тезису Черча—Тьюринга?

1.7. Хаос

1.8. Аналоговые вычисления

1.9. Невычислительные процессы

1.10. Завтрашний день

1.11. Обладают ли компьютеры правами и несут ли ответственность?

1.12. «Осознание», «понимание», «сознание», «интеллект»

1.13. Доказательство Джона Серла

1.14. Некоторые проблемы вычислительной модели

1.15. Свидетельствуют ли ограниченные возможности сегодняшнего ии в пользу ?

1.16. Доказательство на основании теоремы Гёделя

1.17. Платонизм или мистицизм?

1.18. Почему именно математическое понимание?

1.19. Какое отношение имеет теорема Гёделя к «бытовым» действиям?

1.20. Мысленная визуализация и виртуальная реальность

1.21. Является ли невычислимым математическое воображение?

Примечания

2 Геделевское доказательство

2.1. Теорема Гёделя и машины Тьюринга

2.2. Вычисления

2.3. Незавершающиеся вычисления

2.4. Как убедиться в невозможности завершить вычисление?

2.5. Семейства вычислений; следствие Гёделя — Тьюринга

2.6. Возможные формальные возражения против

2.7. Некоторые более глубокие математические соображения

2.8. Условие -непротиворечивости

2.9. Формальные системы и алгоритмическое доказательство

2.10. Возможные формальные возражения против (продолжение)

Примечания

Приложение а: геделизирующая машина тьюринга в явном виде

3 О невычислимости в математическом мышлении

3.1. Гёдель и Тьюринг

О психофизи(ологи)ческой проблеме

Р.Пенроуз. Тени ума: в поисках потерянной науки о сознании. Penrose r. Shadows of the mind: a search for the missing science of consciousness. - Oxford, 1994. - XVI, 457 p.

Во-первых, сознание естественно изучать там, где оно в некотором смысле отключается. В качестве примера механизма отключения рассматривается анестезия. Во-вторых, известно, что общие анестетики (окись азота, хлороформ и др.) примерно одинаково действуют как на людей и высших животных, так и на одноклеточные организмы. В связи с тем, что химическая природа общих анестетиков различна специалистами высказывается предположение о том, что столь широкий биологический диапазон их воздействия имеет нехимическую природу. Для объяснения механизма этого воздействия привлекаются силы ван дер Ваальса, силы дальнодействия, существующие между молекулами, обладающими дипольным моментом.

Аналогом нервной системы у одноклеточных является скелет клетки. Существенным структурным элементом этого скелета являются микротрубочки, для функционирования которых могут оказаться существенными эффекты квантовой когерентности. И хотя квантовые механизмы не привлекаются специалистами для моделирования передачи сигналов по нейронным сетям, они вполне могут быть задействованы при моделировании процессов, происходящих в микротрубочках. Иными словами, квантовые эффекты, существенные для мышления, связаны с функционированием скелета нейронов, а физическая модель мышления описывается как макроскопическое квантовое когерентное состояние, не связанное с окружающим термическим фоном. Поскольку работа мозга не связана с явлениями массопереноса, то гравитационно индуцированный коллапс волновой функции здесь не применим, в связи с этим рассматривается другой механизм редукции, связанный с влиянием внешней среды. Процесс редукции волновой функции играет ключевую роль в функционировании мозга, поскольку необходим переход от квантовой модели мышления к классической сети нейронов, которая трактуется как система усиления слабых сигналов.

«На подобную компьютеру классическую сеть нейронов постоянно влияет активность их клеточных скелетов, как проявление того, что мы могли бы обозначить как “свободная воля» (с.376). Роль нейронов в этой картине больше похожа на роль умножительного устройства, в котором маломасштабная активность клеточных скелетов преобразуется в нечто, способное влиять на другие функции тела, например, на мускулы. Соответственно уровень нейронов, на котором в настоящее время описывается функционирование мозга и сознания, - это просто тень более глубокой активности клеточных скелетов и именно на этом более глубоком уровне мы и должны искать физическую основу сознания!”(там же).


Вторая часть книги заканчивается обсуждением вопроса о том, каковы причины неизбежности проявления невычислимости в квантовой теории. «Есть ли какие-либо свидетельства в пользу того, что невычислимость могла бы быть существенной чертой любой теории, которая в конце концов корректно объединила бы (и подходящим образом модифицировала) и квантовую теорию и общую теорию относительности?» (с. 383).

Приводится два примера такого рода свидетельств. Первый возникает из необходимости квантования пространства-времени при построении квантовой теории гравитации и следовательно необходимости сравнения различных топологий четырехмерного пространства-времени: проблема топологической эквивалентности четырехмерных многообразий.

Приводится иллюстрированный пример этой проблемы для двухмерных многообразий: капля любой формы (точнее говоря, ее поверхность как двухмерное многообразие) топологически эквивалентна сфере, которая не эквивалентна тору, т.к. в нем есть отверстие, но тор топологически эквивалентен чашке, так как у нее есть только одно отверстие - в ручке. В 1958 г. А.А.Марков показал, что проблема топологической эквивалентности четырехмерных многообразий сводима к проблеме остановки машины Тьюринга и следовательно не существует общего алгоритма, который бы за конечное число шагов мог решить эту проблему. Проблема остановки машины Тьюринга - это как раз та проблема, которая возникает в связи с доказательством невычислимости процесса мышления на основе следствий из теоремы Геделя. Этот результат однако не означает, что проблему топологической эквивалентности для четырехмерных многообразий нельзя решить в том или ином конкретном случае.

Второй пример связан с фундаментальным фактом общей теории относительности об искривлении траектории луча света в гравитационном поле. Если в приведенном выше примере рассматриваются все возможные топологии, то в данном случае в центре внимания оказывается специфическая топология, допускающая замкнутые временеподобные кривые. Эйнштейновское отклонение луча света в искривленном пространстве-времени дает принципиальную возможность топологий пространства-времени с замкнутыми временеподобными кривыми: возможность путешествия в прошлое, “машина времени”. Поскольку на макроскопическом уровне такие топологии пространства-времени приводят к парадоксам причинности: можно вернуться в свое собственное прошлое и убить своего деда до своего рождения, - то они исключаются. Однако это исключение на макроуровне не означает запрет на такие топологии на микроуровне. Оказывается появление таких топологий в квантовой теории гравитации означается наличие в ней неустранимой невычислимости.


В заключительной главе рассматривается модель трех миров: физического, психического и мира идей Платона. Обсуждается отличие трактовки трех миров автором от модели К.Поппера. Книга заканчивается следующим утверждением: «Я рассматривал три мира и чудесные связи между ними, но нет сомнения в том, что есть не три мира, а один, отблеска подлинной природы которого мы еще не видели» (с.420).

Из коллекции сайта «РазныеРазности»

http://hotmix.narod.ru