Файл: Учебное пособие.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.12.2020

Просмотров: 6492

Скачиваний: 15

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Введение

1.Введение в технологии разработки программного обеспечения

1.1.Основные этапы развития технологии разработки

1.1.1.Первый этап – «стихийное» программирование.

1.1.2.Второй этап – структурный подход к программированию (60-70-е годы XX в)

1.1.3.Третий этап – объектный подход к программированию (с середины 80-х годов до нашего времени)

1.1.4.Четвертый этап – компонентный подход и CASE-технологии (с середины 90-х годов до нашего времени)

1.1.5.Пятый этап – разработка, ориентированная на архитектуру и CASE-технологии (с начала XXI в. до нашего времени)

1.2.Эволюция моделей жизненного цикла программного обеспечения

1.2.1.Каскадная модель

1.2.2.Спиральная модель

1.2.3.Макетирование

1.2.4.Быстрая разработка приложений

1.2.5.Компонентно-ориентированная модель

1.2.6.XP-процесс

1.3.Стандарты, регламентирующие процесс разработки программного обеспечения

1.3.1.ГОСТ Р ИСО 9000-2001. Системы менеджмента качества. Основные положения и словарь

1.3.1.1.Предисловие

1.3.1.2.Введение

1.3.1.3.Область применения

1.3.1.4.Основные положения систем менеджмента качества

1.3.2.ГОСТ Р ИСО/МЭК ТО 15504

1.3.2.1.Обзор

1.3.2.2.Область применения

1.3.2.3.Состав ИСО/МЭК ТО 15504

1.3.2.4.Связь с другими международными стандартами

1.3.3.ГОСТ Р ИСО/МЭК 12207-99. Информационная технология. Процессы жизненного цикла программных средств

1.3.3.1.Введение

1.3.3.2.Область применения

1.3.3.3.Прикладное применение настоящего стандарта

2.Анализ проблемы и постановка задачи

2.1.Введение в системный анализ

2.2.Системные ресурсы

2.3.Анализ проблемы и моделирование предметной области с использованием системного подхода

2.3.1.Основные положения

2.3.2.Этап 1. Достижение соглашения об определении проблемы

2.3.3.Этап 2. Выделение основных причин – проблем, стоящих за проблемой

2.3.3.1.Устранение корневых причин

2.3.4.Этап 3. Выявление заинтересованных лиц и пользователей

2.3.5.Этап 4. Определение границ системы-решения

2.3.6.Этап 5. Выявление ограничений, налагаемых на решение

2.4.Методология ARIS

2.4.1.Организационная модель

2.4.2.Диаграмма цепочки добавленного качества

2.4.3.Модели eEPC

2.5.Стандарты IDEF0 - IDEF3

2.5.1.Методология описания бизнес процессов IDEF3

2.5.1.1.Синтаксис и семантика моделей IDEF3

2.5.1.2.Требования IDEF3 к описанию бизнес-процессов

2.5.2.Методология функционального моделирования IDEF0

2.5.2.1.Синтаксис и семантика моделейIDEF0

2.5.2.2.Построение моделей IDEF0

3.Анализ требований и их формализация

3.1.Методы определения требований

3.1.1.Интервьюирование

3.1.1.1.Этапы проведения интервью

3.1.2.Мозговой штурм и отбор идей

3.1.2.1.Генерация идей

3.1.2.2.Отбор идей

3.1.3.Совместная разработка приложений (JAD – Joint application design)

3.1.3.1.Роли в сеансах JAD

3.1.3.2.Сеансы JAD

3.1.3.3.Результаты проведения сеанса JAD

3.1.3.4.Недостатки метода JAD

3.1.4.Раскадровка

3.1.4.1.Типы раскадровок

3.1.5.Обыгрывание ролей

3.1.5.1.Суть метода обыгрывания ролей

3.1.5.2.Сценарный просмотр

3.1.6.CRC-карточки (Class-Responsibility-Collaboration, класс-обязанность-взаимодействие)

3.1.7.Быстрое прототипирование

3.2.Формализация требований

3.2.1.Метод вариантов использования и его применение

3.2.1.1.Построение модели вариантов использования

3.2.1.2.Спецификация вариантов использования

3.2.1.3.Преимущества

3.2.2.Псевдокод

3.2.3.Конечные автоматы

3.2.4.Графические деревья решений

3.2.5.Диаграммы деятельности

3.3.Техническое задание (ГОСТ 34.602-89)

3.3.1. Общие сведения

3.3.2.Назначение и цели создания (развития) системы

3.3.2.1.Назначение системы

3.3.2.2.Цели создания системы

3.3.3.Характеристики объекта автоматизации

3.3.4.Требования к системе

3.3.4.1.Требования к системе в целом

3.3.4.2.Требования к функциям (задачам)

3.3.4.3.Требования к видам обеспечения

3.3.5.Состав и содержание работ по созданию системы

3.3.6.Порядок контроля и приемки системы

3.3.7.Требования к составу и содержанию работ по подготовке объекта автоматизации к вводу системы в действие

3.3.8.Требования к документированию

3.3.9.Источники разработки

4.Архитектуры программных систем

4.1.Планирование архитектуры

4.1.1.Архитектурно-экономический цикл

4.1.2.Программный процесс и архитектурно-экономический цикл

4.1.2.1.Этапы разработки архитектуры

4.1.3.Суть программной архитектуры

4.1.3.1.Архитектурные образцы, эталонные модели и эталонные варианты архитектуры

4.1.3.2.Архитектурные структуры и представления

4.2.Проектирование архитектуры

4.2.1.Атрибутный метод проектирования

4.2.1.1.Этапы ADD

4.2.2.Создание макета системы

4.3.Документирование программной архитектуры

4.3.1.Варианты применения архитектурной документации

4.3.2.Представления

4.3.2.1.Выбор значимых представлений

4.3.3.Документирование представления

4.3.3.1.Документирование поведения

4.3.3.2.Документирование интерфейсов

4.4.Методы анализа архитектуры

4.4.1.Метод анализа компромиссных архитектурных решений – комплексный подход к оценке архитектуры

4.4.1.1.Этапы АТАМ

4.4.2.Метод анализа стоимости и эффективности — количественный подход к принятию архитектурно-проектных решений

4.4.2.1.Контекст принятия решений

4.4.2.2.Реализация СВАМ

5.Технология MDA.

5.1.Использование архитектуры, управляемой моделью

5.1.1.Концепция архитектуры, управляемой моделью

5.1.2.Модельные точки зрения и модели MDA

5.2.Язык объектных ограничений OCL

5.2.1.Типы данных и операции OCL

5.2.2.Инфиксная форма записи выражений OCL

5.2.3.Последовательности доступа к объектам в языке OCL

5.2.4.Операции над коллекциями

5.2.4.1.Стандартные операции

5.2.4.2.Операция select

5.2.4.3.Операция reject

5.2.4.4.Выделение элементов коллекции

5.2.4.5.Упорядочение набора

5.2.4.6.Логические итераторы

5.2.4.7.Операции для работы со строками

5.2.4.8.Работа с датами

5.3.Возможности технологии ECO

5.3.1.Введение в технологию ЕСО

5.3.2.Модель ЕСО

5.3.3.Пространство имен ЕСО

5.4.Разработка приложений на основе ECO

5.4.1.Этапы создания приложения по технологии ECO

5.4.2.Создание простого MDA-приложения

5.4.2.1.Создание модели UML

5.4.2.2.Создание интерфейса

5.4.2.3.Связывание интерфейса с моделью

5.4.2.4.Создание логики на OCL

6.Документирование программных систем в соответствии с ГОСТ

6.1.Управление документированием программного обеспечения

6.1.1.Предисловие

6.1.2.Область применения

6.1.3.Роль руководителей

6.1.4.Функции программной документации

6.1.4.1.Информация для управления

6.1.4.2.Связь между задачами

6.1.4.3.Обеспечение качества

6.1.4.4.Инструкции и справки

6.1.4.5.Сопровождение программного обеспечения

6.1.4.6.Исторические справки

6.1.5.Установление стратегии документирования

6.1.6.Определение стандартов и руководств по документированию

6.1.6.1.Выбор модели жизненного цикла программного обеспечения

6.1.6.2.Определение типов и содержания документов

6.1.6.3.Определение качества документов

6.1.6.4.Определение форматов документов

6.1.6.5.Определение системы обозначения документов

6.1.7.Установление процедуры документирования

6.1.8.Распределение ресурсов для документирования

6.1.8.1.Персонал

6.1.8.2.Средства

6.1.8.3.Финансирование

6.1.9.Планирование документирования

6.2.Требования к содержанию документов на автоматизированные системы

6.2.1.Общие положения

6.2.2.Требования к содержанию документов по общесистемным решениям

6.2.2.1.Ведомость эскизного (технического) проекта

6.2.2.2.Пояснительные записки к эскизному, техническому проектам

6.2.2.3.Схема функциональной структуры

6.2.2.4.Описание автоматизируемых функций

6.2.2.5.Описание постановки задачи (комплекса задач)

6.2.2.6.Локальная смета и локальный сметный расчет

6.2.2.7.Паспорт

6.2.2.8.Формуляр

6.2.2.9.Проектная оценка надежности системы

6.2.2.10.Общее описание системы

6.2.2.11.Программа и методика испытаний (компонентов, комплексов средств автоматизации, подсистем, систем)

6.2.3.Требования к содержанию документов с решениями по организационному обеспечению

6.2.3.1.Описание организационной структуры

6.2.3.2.Методика (технология) автоматизированного проектирования

6.2.3.3.Технологическая инструкция

6.2.3.4.Руководство пользователя

6.2.3.5.Описание технологического процесса обработки данных

6.2.4.Требования к содержанию документов с решениями по программному обеспечению

6.2.4.1.Описание программного обеспечения

6.2.5.Другие разделы

6.3.Принципы разработки руководства программиста

6.3.1.Общие положения

6.3.2.Содержание разделов

6.4.Разработка руководства пользователя

6.4.1.Общие замечания

6.4.2.Содержание разделов руководства

6.4.2.1.Общие сведения

6.4.2.2.Описание применения

6.4.2.3.Требования к процедурам функционирования системы

Заключение

Библиографический список

Чтобы разобраться в существующих технологиях программирования и определить основные тенденции их развития, целесообразно рассматривать эти технологии в историческом контексте, выделяя основные этапы развития программирования, как науки.

1.1.1.Первый этап – «стихийное» программирование.

Этот этап охватывает период от момента появления первых вычислительных машин до середины 60-х годов XX в. В этот период практически отсутствовали сформулированные технологии, и программирование фактически было искусством. Первые программы имели простейшую структуру. Они состояли из собственно программы на машинном языке и обрабатываемых ею данных (Рис. 1 .2). Сложность программ в машинных кодах ограничивалась способностью программиста одновременно мысленно отслеживать последовательность выполняемых операций и местонахождение данных при программировании.

Рис. 1.2. Структура первых программ

Появление ассемблеров позволило вместо двоичных или 16-ричных кодов использовать символические имена данных и мнемоники кодов операций. В результате программы стали более «читаемыми».

Создание языков программирования высокого уровня, таких, как FORTRAN и ALGOL, существенно упростило программирование вычислений, снизив уровень детализации операций. Это, в свою очередь, позволило увеличить сложность программ.

Революционным было появление в языках средств, позволяющих оперировать подпрограммами. (Идея написания подпрограмм появилась гораздо раньше, но отсутствие средств поддержки в первых языковых средствах существенно снижало эффективность их применения.) Подпрограммы можно было сохранять и использовать в других программах. В результате были созданы огромные библиотеки расчетных и служебных подпрограмм, которые по мере надобности вызывались из разрабатываемой программы.

Типичная программа того времени состояла из основной программы, области глобальных данных и набора подпрограмм (в основном библиотечных), выполняющих обработку всех данных или их части (Рис. 1 .3).

Рис. 1.3. Принцип работы программ с глобальной областью данных.

Слабым местом такой архитектуры было то, что при увеличении количества подпрограмм возрастала вероятность искажения части глобальных данных какой-либо подпрограммой. Например, подпрограмма поиска корней уравнения на заданном интервале по методу деления отрезка пополам меняет величину интервала. Если при выходе из подпрограммы не предусмотреть восстановления первоначального интервала, то в глобальной области окажется неверное значение интервала. Чтобы сократить количество таких ошибок, было предложено в подпрограммах размещать локальные данные (Рис. 1 .4).

Рис. 1.4. Принцип работы программы, использующей подпрограммы с локальными данными

Сложность разрабатываемого программного обеспечения при использовании подпрограмм с локальными данными по-прежнему ограничивалась возможностью программиста отслеживать процессы обработки данных, но уже на новом уровне. Однако появление средств поддержки подпрограмм позволило осуществлять разработку программного обеспечения нескольким программистам параллельно.


В начале 60-х годов XX в. разразился «кризис программирования». Он выражался в том, что фирмы, взявшиеся за разработку сложного программного обеспечения, такого, как операционные системы, срывали все сроки завершения проектов. Проект устаревал раньше, чем был готов к внедрению, увеличивалась его стоимость, и в результате многие проекты так никогда и не были завершены.

Объективно все это было вызвано несовершенством технологии программирования. Прежде всего, стихийно использовалась разработка «снизу-вверх» - подход, при котором вначале проектировали и реализовывали сравнительно простые подпрограммы, из которых затем пытались построить сложную программу. В отсутствии четких моделей описания подпрограмм и методов их проектирования создание каждой подпрограммы превращалось в непростую задачу, интерфейсы подпрограмм получались сложными, и при сборке программного продукта выявлялось большое количество ошибок согласования. Исправление таких ошибок, как правило, требовало серьезного изменения уже разработанных подпрограмм, что еще более осложняло ситуацию, так как при этом в программу часто вносились новые ошибки, которые также необходимо было исправлять... В конечном итоге процесс тестирования и отладки программ занимал более 80 % времени разработки, если вообще когда-нибудь заканчивался. На повестке дня самым серьезным образом стоял вопрос разработки технологии создания сложных программных продуктов, снижающей вероятность ошибок проектирования.

Анализ причин возникновения большинства ошибок позволил сформулировать новый подход к программированию, который был назван «структурным».

1.1.2.Второй этап – структурный подход к программированию (60-70-е годы XX в)

Структурный подход к программированию представляет собой совокупность рекомендуемых технологических приемов, охватывающих выполнение всех этапов разработки программного обеспечения. В основе структурного подхода лежит декомпозиция (разбиение на части) сложных систем с целью последующей реализации в виде отдельных небольших подпрограмм. С появлением других принципов декомпозиции (объектного, логического и т. д.) данный способ получил название процедурной декомпозиции.

В отличие от используемого ранее процедурного подхода к декомпозиции, структурный подход требовал представления задачи в виде иерархии подзадач простейшей структуры. Проектирование, таким образом, осуществлялось «сверху-вниз» и подразумевало реализацию общей идеи, обеспечивая проработку интерфейсов подпрограмм. Одновременно вводились ограничения на конструкции алгоритмов, рекомендовались формальные модели их описания, а также специальный метод проектирования алгоритмов – метод пошаговой детализации.

Поддержка принципов структурного программирования была заложена в основу так называемых процедурных языков программирования. Как правило, они включали основные «структурные» операторы передачи управления, поддерживали вложение подпрограмм, локализацию и ограничение области «видимости» данных. Среди наиболее известных языков этой группы стоит назвать PL/1, ALGOL-68, Pascal, С.


Одновременно со структурным программированием появилось огромное количество языков, базирующихся на других концепциях, но большинство из них не выдержало конкуренции. Какие-то языки были просто забыты, идеи других были в дальнейшем использованы в следующих версиях развиваемых языков.

Дальнейший рост сложности и размеров разрабатываемого программного обеспечения потребовал развития структурирования данных. Как следствие этого в языках появляется возможность определения пользовательских типов данных. Одновременно усилилось стремление разграничить доступ к глобальным данным программы, чтобы уменьшить количество ошибок, возникающих при работе с глобальными данными. В результате появилась и начала развиваться технология модульного программирования.

Модульное программирование предполагает выделение групп подпрограмм, использующих одни и те же глобальные данные в отдельно компилируемые модули (библиотеки подпрограмм), например, модуль графических ресурсов, модуль подпрограмм вывода на принтер (Рис. 1 .5). Связи между модулями при использовании данной технологии осуществляются через специальный интерфейс, в то время как доступ к реализации модуля (телам подпрограмм и некоторым «внутренним» переменным) запрещен. Эту технологию поддерживают современные версии языков Pascal и С (C++), языки Ада и Modula.

Использование модульного программирования существенно упростило разработку программного обеспечения несколькими программистами. Теперь каждый из них мог разрабатывать свои модули независимо, обеспечивая взаимодействие модулей через специально оговоренные межмодульные интерфейсы. Кроме того, модули в дальнейшем без изменений можно было использовать в других разработках, что повысило производительность труда программистов.

Рис. 1.5. Модульная структура программ

Практика показала, что структурный подход в сочетании с модульным программированием позволяет получать достаточно надежные программы, размер которых не превышает 100 000 операторов. Узким местом модульного программирования является то, что ошибка в интерфейсе при вызове подпрограммы выявляется только при выполнении программы (из-за раздельной компиляции модулей обнаружить эти ошибки раньше невозможно). При увеличении размера программы обычно возрастает сложность межмодульных интерфейсов, и с некоторого момента предусмотреть взаимовлияние отдельных частей программы становится практически невозможно. Для разработки программного обеспечения большого объема было предложено использовать объектный подход.

1.1.3.Третий этап – объектный подход к программированию (с середины 80-х годов до нашего времени)

Объектно-ориентированное программирование определяется как технология создания сложного программного обеспечения, основанная на представлении программы в виде совокупности объектов, каждый из которых является экземпляром определенного класса (Рис. 1 .6), а классы образуют иерархию с наследованием свойств. Взаимодействие программных объектов в такой системе осуществляется путем передачи сообщений (Рис. 1 .7).


Объектная структура программы впервые была использована в языке имитационного моделирования сложных систем Simula, появившемся еще в 60-х годах XX в. Естественный для языков моделирования способ представления программы получил развитие в другом специализированном языке моделирования – языке Smalltalk (70-е годы XX в.), а затем был использован в новых версиях универсальных языков программирования, таких, как Pascal, C++, Modula, Java.

Рис. 1.6. Структура объектно-ориентированной программы в виде связанных классов

Рис. 1.7. Взаимодействие объектов в объектно-ориентированных программах

Основным достоинством объектно-ориентированного программирования по сравнению с модульным программированием является «более естественная» декомпозиция программного обеспечения, которая существенно облегчает его разработку. Это приводит к более полной локализации данных и интегрированию их с подпрограммами обработки, что позволяет вести практически независимую разработку отдельных частей (объектов) программы. Кроме этого, объектный подход предлагает новые способы организации программ, основанные на механизмах наследования, полиморфизма, композиции, наполнения. Эти механизмы позволяют конструировать сложные объекты из сравнительно простых. В результате существенно увеличивается показатель повторного использования кодов и появляется возможность создания библиотек классов для различных применений

Бурное развитие технологий программирования, основанных на объектном подходе, позволило решить многие проблемы. Так были созданы среды, поддерживающие визуальное программирование, например, Delphi, C++ Builder, Visual C++ и т. д. При использовании визуальной среды у программиста появляется возможность проектировать некоторую часть, например, интерфейсы будущего продукта, с применением визуальных средств добавления и настройки специальных библиотечных компонентов. Результатом визуального проектирования является заготовка будущей программы, в которую уже внесены соответствующие коды.

Использование объектного подхода имеет много преимуществ, однако его конкретная реализация в объектно-ориентированных языках программирования, таких, как Pascal и C++, имеет существенные недостатки:

  • фактически отсутствуют стандарты компоновки двоичных результатов компиляции объектов в единое целое даже в пределах одного языка программирования: компоновка объектов, полученных разными компиляторами C++ в лучшем случае проблематична, что приводит к необходимости разработки программного обеспечения с использованием средств и возможностей одного языка программирования высокого уровня и одного компилятора, а значит, требует наличия исходных кодов используемых библиотек классов;

  • изменение реализации одного из программных объектов, как минимум, связано с перекомпиляцией соответствующего модуля и перекомпоновкой всего программного обеспечения, использующего данный объект.


Таким образом, при использовании этих языков программирования сохраняется зависимость модулей программного обеспечения от адресов экспортируемых полей и методов, а также структур и форматов данных. Эта зависимость объективна, так как модули должны взаимодействовать между собой, обращаясь к ресурсам друг друга. Связи модулей нельзя разорвать, но можно попробовать стандартизировать их взаимодействие, на чем и основан компонентный подход к программированию.

1.1.4.Четвертый этап – компонентный подход и CASE-технологии (с середины 90-х годов до нашего времени)

Компонентный подход предполагает построение программного обеспечения из отдельных компонентов – физически отдельно существующих частей программного обеспечения, которые взаимодействуют между собой через стандартизованные двоичные интерфейсы. В отличие от обычных объектов объекты-компоненты можно собрать в динамически вызываемые библиотеки или исполняемые файлы, распространять в двоичном виде (без исходных текстов) и использовать в любом языке программирования, поддерживающем соответствующую технологию. На сегодня рынок объектов стал реальностью, так в Интернете существуют узлы, предоставляющие большое количество компонентов, рекламой компонентов забиты журналы. Это позволяет программистам создавать продукты, хотя бы частично состоящие из повторно использованных частей, т. е. использовать технологию, хорошо зарекомендовавшую себя в области проектирования аппаратуры.

Компонентный подход лежит в основе технологий, разработанных на базе COM (Component Object Model - компонентная модель объектов), и технологии создания распределенных приложений CORBA (Common Object Request Broker Architecture - общая архитектура с посредником обработки запросов объектов). Эти технологии используют сходные принципы и различаются лишь особенностями их реализации.

Технология СОМ фирмы Microsoft является развитием технологии OLE (Object Linking and Embedding - связывание и внедрение объектов), которая использовалась в ранних версиях Windows для создания составных документов. Технология СОМ определяет общую парадигму взаимодействия программ любых типов: библиотек, приложений, операционной системы, т. е. позволяет одной части программного обеспечения использовать функции (службы), предоставляемые другой, независимо от того, функционируют ли эти части в пределах одного процесса, в разных процессах на одном компьютере или на разных компьютерах (Рис. 1 .8). Модификация СОМ, обеспечивающая передачу вызовов между компьютерами, называется DCOM (Distributed COM - распределенная СОМ).

По технологии СОМ приложение предоставляет свои службы, используя специальные объекты - объекты СОМ, которые являются экземплярами классов СОМ. Объект СОМ так же, как обычный объект включает поля и методы, но в отличие от обычных объектов каждый объект СОМ может реализовывать несколько интерфейсов, обеспечивающих доступ к его полям и функциям. Это достигается за счет организации отдельной таблицы адресов методов для каждого интерфейса (по типу таблиц виртуальных методов). При этом интерфейс обычно объединяет несколько однотипных функций. Кроме того, классы СОМ поддерживают наследование интерфейсов, но не поддерживают наследования реализации, т. е. не наследуют код методов, хотя при необходимости объект класса-потомка может вызвать метод родителя.