Файл: Практикум для студентов специальности 23. 05. 05 Системы обеспечения движения поездов специализации Автоматика и телемеханика на железнодорожном транспорте.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 24.10.2023

Просмотров: 343

Скачиваний: 8

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
отпустив кнопку НСН, нажать “Сброс” и повторно нажать кнопку “Пошаговый режим” и затем НСН. Если пошаговый режим включился, реле НСН не возбудится до нажатия кнопки “Шаг”. Затем, последовательно нажимая на кнопку “Шаг”, проследить за работой схемы, нанося срабатывание и отпускание реле на временную диаграмму. У тех реле, состояние которых должно измениться, начинает мигать светодиод. Следует иметь в виду, что если реле имеет большое замедление на срабатывание или отпадание, то его состояние изменится только после окончания этого замедления, а не просто от нажатия кнопки “Шаг”, поэтому кнопку “Шаг” надо нажимать не слишком часто. На временной диаграмме для комбинированных реле показывается состояние нейтрального якоря (буква Н) и поляризованного якоря (буква П) над или под соответствующей линией. Кроме того, на временной диаграмме должно быть показано состояние линии Н-ОН и К-ОК.





Выполнять работу следует бригадой не менее чем три человека, при этом два человека нажимают и держат нажатыми требуемые кнопки на станции приема и отправления, а третий рисует на подготовленной временной диаграмме состояние реле.

Проанализировав временную диаграмму, следует ответить на вопросы:

1. В какой момент времени можно отпустить кнопку НСН на станции приема?

2. В какой момент времени можно отпустить кнопку ЧДСО?

  1. Что произойдет, если реле НВ не будет иметь замедление на отпадание?

  2. Почему реле НВКП (ЧВКП) должно иметь замедление на отпадание?

  3. Как повлияет на начавшуюся смену направления наложение шунта на любую РЦ на перегоне, т.е. обрыв линии К-ОК?

Далее снять пошаговый режим, нажав соответствующую кнопку, и установить замедленный режим. Нажатием кнопки “Сброс” привести схему в исходное состояние, и нажав кнопки НСН и ЧДСО, проследить за работой схемы и проверить правильность построения временной диаграммы.

Затем снять замедленный режим и провести схему смены направления в разных направлениях несколько раз и измерить примерное время смены направления. При этом за окончание смены направления следует считать момент, когда со станции
, которая была установлена на прием, можно будет отправить поезд, т. е. до возбуждения реле НСН1, НСН2 или ЧСН1, ЧСН2.
2. Изучение реакции схемы на отказы в линейной цепи.

  1. Установить станцию А на отправление, а станцию В на прием, имитировать обрыв линии К-ОК и проследить за изменением индикации на обеих станциях. Восстановить целостность линии и определить время до появления контроля свободности перегона на станции приема и отправления.

  2. Имитировать кратковременную многократную потерю шунта. Объяснить полученные результаты.

3. Восстановить нормальное состояние линии К-ОК и с помощью перемычки замкнуть ее накоротко. Проследить за индикацией на пульте. Объяснить полученные результаты.

4. Восстановить нормальное состояние схемы и оборвать линию Н-ОН. Проследить за индикацией и объяснить полученные результаты.

5. Восстановить нормальное состояние схемы и закоротить линию Н-ОН. Проследить за индикацией и объяснить полученные результаты.
3. Смена направления во вспомогательном режиме.

Разомкнуть перемычку в линии К-ОК, имитировать ложную занятость РЦ на перегоне. Перейти в пошаговый режим работы и, нажав кнопки ОВ на станции приема (ЧОВ или НОВ) и ПВ (НПВ или ЧПВ) на станции отправления, провести смену направления, построить временную диаграмму.
Содержание отчета
Отчет должен содержать временные диаграммы и пояснение по полученным результатам по всем 7 опытам, временные диаграммы и развернутые ответы на 5 поставленных в пункте 1 вопросов.

Лабораторная работа № 5

ИЗУЧЕНИЕ АППАРАТУРЫ ТОНАЛЬНЫХ РЕЛЬСОВЫХ ЦЕПЕЙ



Основные сведения.
Надежность работы автоблокировки определяется в первую очередь надежностью работы рельсовых цепей. Снижение сопротивления изоляции между рельсами приводит к сокращению длины рельсовых цепей, а следовательно, к необходимости организации на одном блок-участке нескольких рельсовых цепей, разделенных изолирующими стыками, что резко снижает как надежность работы автоблокировки, так и системы АЛСН из-за необходимости организации на изолирующих стыках внутри блок-участка трансляции кодов АЛСН из одной рельсовой цепи в другую. Поэтому можно считать, что возможность применения рельсовых цепей 50 или 25 Гц на участках с пониженным сопротивлением изоляции исчерпана. Применение рельсовых цепей повышенной или тональной частоты [4] позволяет отказаться от изолирующих стыков, так как появляется возможность создания селективных приемников, принимающих только одну частоту, на которую они настроены, и организации в пределах одного блок-участка нескольких рельсовых цепей малой длины, работающих на разных частотах. Второй причиной внедрения тональных рельсовых цепей является использование импульсного регулирования коллекторных двигателей электровозов, что приводит к появлению в рельсах гармоник тягового тока, совпадающего с частотами питания рельсовых цепей. В настоящее время разработаны генераторы и приемники тональных рельсовых цепей с несущей частотой 420, 480, 580, 720 и 780 Гц и с частотой модуляции 8 или 12 Гц. Всего, таким образом, получается 10 возможных комбинаций. Например, 420/8, 420/12, 480/8, 480/12 и т. д. Здесь первая цифра – несущая частота, а вторая цифра – частота модуляции. На магистральном транспорте для защиты от опасных влияний используются три несущих частоты – 420, 480 и 580 Гц, если на блок-участке имеется переезд, используют частоты 780 или 720 Гц. Схема размещения аппаратуры для автоблокировки с тональными рельсовыми цепями и с изолирующими стыками по границам блок-участка (АБТс) приведена на рис. 5.1. Эти рельсовые цепи получили наименование ТРЦ3 (тональная рельсовая цепь третьего типа).

Две смежных рельсовых цепи получают питание с середины от одного генератора и на схемах обозначаются за сигналом с буквой Б, перед сигналом с буквой А. При нормативном сопротивлении изоляции 1 Ом∙км максимальная длина рельсовой цепи – 1 км. В правилах проектирования оговаривается, что
рельсовые цепи с одинаковыми несущими частотами и частотами модуляции могут повторяться при расстоянии 2000 м от питающего конца одной рельсовой цепи до приемного конца другой на тех же частотах. Выполнение этого условия позволяет исключить опасные отказы при коротком замыкании изолирующих стыков.

Число рельсовых цепей на блок-участке определяется минимальным сопротивлением изоляции и может быть сокращено до двух. Максимальное число рельсовых цепей ТРЦ3 на одном блок-участке не ограничивается, но, как правило, не превышает 6.

Для полного отказа от изолирующих стыков необходимо контролировать проход подвижного состава через границу блок-участка. Так как шунтирование рельсовой цепи типа ТРЦЗ может происходить за 100 м до точки подключения аппаратуры, т.е. за 100 м до сигнала, то при отсутствии изостыков перекрытие сигнала на красный будет происходить в этой же точке, т.е. перед поездом.


Для разграничения блок-участков разработаны рельсовые цепи повышенной частоты типа ТРЦ4, с несущей частотой 4,5, 5,0 и 5,5 кГц и частотой модуляции 8 и 12 Гц. Эти рельсовые цепи обеспечивают выполнение всех режимов при минимальном сопротивлении изоляции 0,01 Ом∙км и длине 100 м, при повышении сопротивления изоляции до 0,5 Ом∙км их длина увеличивается до 350 м. Самым главным при этом является то, что шунтирование рельсовой цепи наступает при подходе поезда на расстояние, не превышающее в наихудших условиях 15 м от точки подключения аппаратуры. Схема использования рельсовых цепей ТРЦ4 показана на рис. 5.2.



Рельсовые цепи А1 и Б1типа ТРЦ4, А2 и Б2 – типа ТРЦ3. Допускается подключение к рельсам приемников ТРЦЗ и ТРЦ4 одной парой проводов, а также генератора ТРЦ3 и приемника ТРЦ4. Подключение к одной точке рельсовой линии генератора ТРЦ4 и приемника ТРЦ3 не допускается. Для исключения шунтирования рельсовой цепи Б1 до выхода поезда за сигнал расстояние от точки подключения генератора ТРЦ4 до светофора – 20 м, Максимальная длина рельсовых цепей ТРЦ4, как правило, не превышает 250 м. Автоблокировка без изолирующих стыков с тональными рельсовыми цепями ТРЦ3 и ТРЦ4 обозначается как АБТ.

На основе использования тональных рельсовых цепей третьего типа разработана автоблокировка АБТЦ – автоблокировка с тональными рельсовыми цепями централизованная. Характерной особенностью этой автоблокировки является то, что генераторы и приемники тональных рельсовых цепей размещаются на станции и соединяются с рельсовой линией с помощью кабеля, максимальная длина которого 10 км. Таким образом на станции имеется контроль состояния всех блок-участков, что позволяет выбрать на светофоре соответствующее показание. Управление огнями светофора также ведется по кабелю.


Еще одной областью применения тональных рельсовых цепей является автоматическая переездная сигнализация. Тональные рельсовые цепи могут накладываться на рельсовые цепи первого типа (частотой 50 или 25 Гц) без нарушения нормальной работы основанной на их использовании автоблокировки что позволяет отказаться от организации разрезной сигнальной точки на переезде в случае размещения переезда в середине блок-участка. Кроме того, тональные рельсовые цепи используются на станциях. Как уже отмечалось, это повышает защищенность рельсовых цепей от помех тягового тока при использовании импульсного регулирования коллекторных двигателей электровозов. На станциях тональные рельсовые цепи ограничиваются изолирующими стыками и используются как для приемоотправочных путей, так и для стрелочных секций. При одностороннем пробое изолирующего стыка нормальная работа рельсовой цепи не нарушается, это может приводить при коротком замыкании второго стыка к восприятию «чужого» кода АЛС при параллельном движении поездов в случае схода изолирующих стыков на съезде. Поэтому при использовании тональных рельсовых цепей на станции съезды обязательно оборудуются схемой контроля схода (короткого замыкания) изолирующих стыков (КСС). Схема подключения приемников показана на рис. 5.3. Приемники подключаются по разные стороны стыка последовательно, они настроены на разные частоты, и если рельсовая цепь свободна, соответствующее путевое реле под током. Принцип действия схемы КСС основан на том, что на входы приемников при коротком замыкании изолирующих стыков начинает поступать частота от своего генератора в противофазе с частотой, получаемой приемником ПП1, например, через ПТ1, как это показано на рис. 5.3. Это приводит к выключению путевых реле 1П и 2П и к необходимости устранения короткого замыкания стыков.

Путевой генератор рельсовой цепи ТРЦ3
Путевые генераторы служат для питания рельсовых цепей тональной частоты и выпускаются двух разновидностей: ГП3-8, 9, 11 и ГП3-11, 14, 15. Цифра 8, 9, 11, 14 и 15 обозначает номер гармоники тока промышленной частоты, за которой находится частота, на которую может быть настроен генератор, т.е. 420, 480, 580, 720 и 780 Гц. Требуемая несущая частота устанавливается за счет переключения внешних перемычек. Несущая частота генератора модулируется частотой 8 или 12 Гц. Частота модуляции выбирается также за счет переключения внешних перемычек. Принципиальная схема путевого генератора приведена на рис. 5.4. Формирование несущей частоты выполнено на микросборке