Файл: подготовка газа к транспорту. Выбор оборудования подготовки газа к транспорту.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 25.10.2023
Просмотров: 168
Скачиваний: 7
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
1.ПРИРОДНЫЙ ГАЗ. СОСТАВ И ФИЗИЧЕСКИЕ СВОЙСТВА ПРИРОДНОГО ГАЗА
2. ОБОРУДОВАНИЕ ДЛЯ ПОДГОТОВКИ ДОБЫВАЕМОГО ГАЗА.
2.1 Абсорбционная очистка газов
2.3 Расчет основных размеров абсорберов
2.4 Очистка газа от механических примесей
3. МОДЕРНИЗАЦИЯ СИСТЕМЫ СБОРА И ПОДГОТОВКИ ПОПУТНОГО НЕФТЯНОГО ГАЗА
3.1 Анализ эффективности осушки газа
3.2 Расчет абсорбера, оснащенного регулярной насадкой ДОАО ЦКБН
, описывающая поведение газа. Такими параметрами являются давление, объем и температура.
Состояние идеальных газов в условиях высоких давления и температуры определяется уравнением Клапейрона — Менделеева:
, (1.4)
где р — давление; Vи — объем идеального газа, N— число киломолей газа; R— универсальная газовая постоянная; Т — температура.
Идеальным называется газ, силами взаимодействия между молекулами которого пренебрегают. Реальные углеводородные газы не подчиняются законам идеальных газов. Поэтому уравнение Клапейрона—Менделеева для реальных газов записывается в виде:
pV = ZNRT, (1.5)
где Z — коэффициент сверхсжимаемости реальных газов, зависящий от давления, температуры и состава газа и характеризующий степень отклонения реального газа от закона для идеальных газов.
Коэффициент сверхсжимаемости Z реальных газов — это отношение объемов равного числа молей реального V и идеального Vи газов при одинаковых термобарических условиях (т. е. при одинаковых давлении и температуре):
Z = V/Vи (1.6)
Значения коэффициентов сверхсжимаемости наиболее надежно могут быть определены на основе лабораторных исследований пластовых проб газов. При отсутствии таких исследований (как это чаще всего бывает на практике) прибегают к расчетному методу оценки Z по графику Г. Брауна (рис.1). Для пользования графиком, необходимо знать, так называемые, приведенные псевдокритическое давление и псевдокритическую температуру.
Критической называется такая температура, выше которой газ не может быть превращен в жидкость ни при каком давлении. Критическим давлением называется давление, соответствующее критической точке перехода газа в жидкое состояние.
С приближением значений давления и температуры к критическим свойства газовой и жидкой фаз становятся одинаковыми, поверхность раздела между ними исчезает и плотности их уравниваются.
С появлением в системе двух и более компонентов в закономерностях фазовых изменений возникают особенности, отличающие их поведение от поведения однокомпонентного газа. Не останавливаясь на подробностях, следует отметить, что критическая температура смеси находится между критическими температурами компонентов, а критическое давление смеси всегда выше, чем критическое давление любого компонента.
Для определения коэффициента сверхсжимаемости Z реальных газов, представляющих собой многокомпонентную смесь, находят средние из значений критических давлений и температур каждого компонента. Эти средние называются псевдокритическим давлением pп.кр. и псевдокритической температурой Тп.кр. Они определяются из соотношений:
, , (1.7)
где ркр. и Ткр. – критические давления и температура i-го компонента;
xi – доля i-го компонента в объеме смеси (в долях единицы).
Приведенные псевдокритические давление и температура, необходимые для пользования графиком Брауна, представляют собой псевдокритические значения, приведенные к конкретным давлению и температуре (к пластовым, стандартным или каким-либо другим условиям):
Рпр. = р/рп.кр., (1.8)
Тпр. = Т/Тп.кр., (1.9)
где р и Т – конкретные давления и температура, для которых определяется Z.
Коэффициент сверхсжимаемости Z обязательно используется при подсчете запасов газа для правильного определения изменения объема газа при переходе от пластовых условий к поверхностным, при прогнозировании изменения давления в газовой залежи и при решении других задач.
Метан используется как горючее в газовых плитах.
Пропан и бутан – в качестве топлива в некоторых автомобилях. Также сжиженным пропаном заполняют зажигалки.
Этан в качестве горючего используют редко, основное его применение – получение этилена.
Этилен является одним из самых производимых органических веществ в мире. Он является сырьём для получения полиэтилена.
Ацетилен используется для создания очень высокой температуры в металлургии (сверка и резка металлов). Ацетилен очень горюч, поэтому в качестве топлива в автомобилях не используется, да и без этого условия его хранения должны строго соблюдаться.
Сероводород, несмотря на его токсичность, в малых количествах применяется в т.н. сероводородных ваннах. В них используются некоторые антисептические свойства сероводорода.
Основным полезным свойством гелия является его очень маленькая плотность (в 7 раз легче воздуха). Гелием заполняют аэростаты и дирижабли. Водород ещё более лёгок, чем гелий, но в то же время горюч. Большую популярность среди детей имеют воздушные шарики, надуваемые гелием.
Токсичность
Углекислый газ. Даже большие количества углекислого газа никак не влияют на здоровье человека. Однако он препятствует поглощению кислорода при содержании в атмосфере от 3% до 10% по объёму. При такой концентрации начинается удушье и даже смерть.
Гелий. Гелий абсолютно нетоксичен при нормальных условиях из-за его инертности. Но при повышенном давлении возникает начальная стадия наркоза, похожая на воздействие веселящего газа.
Сероводород. Токсичные свойства этого газа велики. При длительном воздействии на обоняние возникает головокружение, рвота. Также парализуется обонятельный нерв, поэтому возникает иллюзия отсутствия сероводорода, а на самом деле организм его уже просто не ощущает. Отравление сероводородом наступает при концентрации 0,2–0,3 мг/м3, концентрация выше 1 мг/м3 — смертельна.
Природный газ широко применяется в качестве горючего в жилых, частных и многоквартирных домах для отопления, подогрева воды и приготовления пищи; как топливо для машин (газобаллонное оборудование автомобиля, газовый двигатель), котельных, ТЭЦ и др. Сейчас он используется в химической промышленности как исходное сырьё для получения различных органических веществ, например, пластмасс.
В экологическом отношении природный газ является самым чистым видом органического топлива. При его сгорании образуется значительно меньшее количество вредных веществ по сравнению с другими видами топлива. Однако сжигание человечеством огромного количества различных видов топлива, в том числе природного газа, за последние полвека привело к увеличению содержания углекислого газа в атмосфере, который является парниковым газом.
Система сбора и подготовки газа и конденсата предназначена для сбора продукции скважин и подготовки газа и конденсата. Она включает шлейфы, газосборные промысловые коллекторы, установки комплексной подготовки газа (УКПГ), дожимные компрессорные станции (ДКС), газо- перерабатывающий завод (ГПЗ).
Система сбора зависит от размера и конфигурации месторождения, числа залежей, пластовых и устьевых давлений и температур, запасов газа и конденсата, дебитов скважин, содержания конденсата в газе, наличия кислых компонентов, климатических условий, в которых находится месторождение.
Система сбора и подготовки газа и конденсата проектируется и выбирается на весь срок разработки месторождения на основе технико- экономических расчетов.
Некоторые жидкости и твердые вещества при контакте с многокомпонентной газовой средой способны избирательно извлекать из нее отдельные ингредиенты и поглощать (сорбировать) их.
Абсорбция - поглощение газов или паров из газовых или парогазовых смесей жидкими поглотителями, называемыми абсорбентами. Возможность осуществления процесса абсорбции основывается на растворимости газов в жидкостях. Процесс абсорбции является избирательным и обратимым, что дает возможность применять его не только с целью получения растворов газов в жидкостях, но также и для разделения газовых или паровых смесей.
В последнем случае после избирательной абсорбции одного или нескольких компонентов из газовой или паровой смеси проводят десорбцию - выделение этих компонентов из жидкости - и таким образом осуществляют разделение. Регенерированный абсорбент вновь возвращается на абсорбцию (круговой процесс).
Поглощение газа может происходить либо за счет его растворения в абсорбенте, либо в результате его химического взаимодействия с абсорбентом. В первом случае процесс называют физической абсорбцией, а во втором случае - хемосорбцией. Возможно также сочетание обоих механизмов процесса. Абсорбируемые компоненты газовой смеси называют абсорбтивом, а не абсорбируемые - инертом.
Абсорбентами служат индивидуальные жидкости или растворы активного компонента в жидком растворителе. Во всех случаях к абсорбентам предъявляют ряд требований, среди которых наиболее существенными являются: высокая абсорбционная способность, селективность, низкое давление пара, химическая инертность по отношению к распространенным конструкционным материалам (при физической абсорбции - также к компонентам газовой смеси), не токсичность, огне- и взрывобезопасность, доступность и не высокая стоимость.
При проведении абсорбции в качестве абсорбентов применяют воду, органические растворители, не вступающие в реакцию с извлекаемым газом, и водные растворы этих веществ. При хемосорбции в качестве абсорбента используют водные растворы солей, органические вещества и водные суспензии различных веществ.
Если растворимость газов при 0°С и парциальном давлении 101,3 кПа составляет сотни грамм на 1кг абсорбента, то такие пары называют хорошо растворимыми. Для удаления из технических выбросов таких газов, как NH3, НСl и HF, целесообразно применять в качестве абсорбента воду. Нецелесообразно использовать воду для очистки выбросов с нерастворимыми в ней органическими примесями. Подобные загрязнители как правило хорошо поглощаются органическими жидкостями, среди которых могут использоваться как абсорбенты высококипящие вещества, такие как этаноламины и тяжелые предельные углеводороды (минеральные масла). Абсорбенты, применяемые для очистки отходящих газов, приведены в таблице 2.1.
Таблица 2.1 - Абсорбенты, применяемые для очистки отходящих газов
Состояние идеальных газов в условиях высоких давления и температуры определяется уравнением Клапейрона — Менделеева:
, (1.4)
где р — давление; Vи — объем идеального газа, N— число киломолей газа; R— универсальная газовая постоянная; Т — температура.
Идеальным называется газ, силами взаимодействия между молекулами которого пренебрегают. Реальные углеводородные газы не подчиняются законам идеальных газов. Поэтому уравнение Клапейрона—Менделеева для реальных газов записывается в виде:
pV = ZNRT, (1.5)
где Z — коэффициент сверхсжимаемости реальных газов, зависящий от давления, температуры и состава газа и характеризующий степень отклонения реального газа от закона для идеальных газов.
Коэффициент сверхсжимаемости Z реальных газов — это отношение объемов равного числа молей реального V и идеального Vи газов при одинаковых термобарических условиях (т. е. при одинаковых давлении и температуре):
Z = V/Vи (1.6)
Значения коэффициентов сверхсжимаемости наиболее надежно могут быть определены на основе лабораторных исследований пластовых проб газов. При отсутствии таких исследований (как это чаще всего бывает на практике) прибегают к расчетному методу оценки Z по графику Г. Брауна (рис.1). Для пользования графиком, необходимо знать, так называемые, приведенные псевдокритическое давление и псевдокритическую температуру.
Критической называется такая температура, выше которой газ не может быть превращен в жидкость ни при каком давлении. Критическим давлением называется давление, соответствующее критической точке перехода газа в жидкое состояние.
С приближением значений давления и температуры к критическим свойства газовой и жидкой фаз становятся одинаковыми, поверхность раздела между ними исчезает и плотности их уравниваются.
С появлением в системе двух и более компонентов в закономерностях фазовых изменений возникают особенности, отличающие их поведение от поведения однокомпонентного газа. Не останавливаясь на подробностях, следует отметить, что критическая температура смеси находится между критическими температурами компонентов, а критическое давление смеси всегда выше, чем критическое давление любого компонента.
Для определения коэффициента сверхсжимаемости Z реальных газов, представляющих собой многокомпонентную смесь, находят средние из значений критических давлений и температур каждого компонента. Эти средние называются псевдокритическим давлением pп.кр. и псевдокритической температурой Тп.кр. Они определяются из соотношений:
, , (1.7)
где ркр. и Ткр. – критические давления и температура i-го компонента;
xi – доля i-го компонента в объеме смеси (в долях единицы).
Приведенные псевдокритические давление и температура, необходимые для пользования графиком Брауна, представляют собой псевдокритические значения, приведенные к конкретным давлению и температуре (к пластовым, стандартным или каким-либо другим условиям):
Рпр. = р/рп.кр., (1.8)
Тпр. = Т/Тп.кр., (1.9)
где р и Т – конкретные давления и температура, для которых определяется Z.
Коэффициент сверхсжимаемости Z обязательно используется при подсчете запасов газа для правильного определения изменения объема газа при переходе от пластовых условий к поверхностным, при прогнозировании изменения давления в газовой залежи и при решении других задач.
1.3 Применение
Метан используется как горючее в газовых плитах.
Пропан и бутан – в качестве топлива в некоторых автомобилях. Также сжиженным пропаном заполняют зажигалки.
Этан в качестве горючего используют редко, основное его применение – получение этилена.
Этилен является одним из самых производимых органических веществ в мире. Он является сырьём для получения полиэтилена.
Ацетилен используется для создания очень высокой температуры в металлургии (сверка и резка металлов). Ацетилен очень горюч, поэтому в качестве топлива в автомобилях не используется, да и без этого условия его хранения должны строго соблюдаться.
Сероводород, несмотря на его токсичность, в малых количествах применяется в т.н. сероводородных ваннах. В них используются некоторые антисептические свойства сероводорода.
Основным полезным свойством гелия является его очень маленькая плотность (в 7 раз легче воздуха). Гелием заполняют аэростаты и дирижабли. Водород ещё более лёгок, чем гелий, но в то же время горюч. Большую популярность среди детей имеют воздушные шарики, надуваемые гелием.
Токсичность
Углекислый газ. Даже большие количества углекислого газа никак не влияют на здоровье человека. Однако он препятствует поглощению кислорода при содержании в атмосфере от 3% до 10% по объёму. При такой концентрации начинается удушье и даже смерть.
Гелий. Гелий абсолютно нетоксичен при нормальных условиях из-за его инертности. Но при повышенном давлении возникает начальная стадия наркоза, похожая на воздействие веселящего газа.
Сероводород. Токсичные свойства этого газа велики. При длительном воздействии на обоняние возникает головокружение, рвота. Также парализуется обонятельный нерв, поэтому возникает иллюзия отсутствия сероводорода, а на самом деле организм его уже просто не ощущает. Отравление сероводородом наступает при концентрации 0,2–0,3 мг/м3, концентрация выше 1 мг/м3 — смертельна.
1.4 Основные выводы по главе
Природный газ широко применяется в качестве горючего в жилых, частных и многоквартирных домах для отопления, подогрева воды и приготовления пищи; как топливо для машин (газобаллонное оборудование автомобиля, газовый двигатель), котельных, ТЭЦ и др. Сейчас он используется в химической промышленности как исходное сырьё для получения различных органических веществ, например, пластмасс.
В экологическом отношении природный газ является самым чистым видом органического топлива. При его сгорании образуется значительно меньшее количество вредных веществ по сравнению с другими видами топлива. Однако сжигание человечеством огромного количества различных видов топлива, в том числе природного газа, за последние полвека привело к увеличению содержания углекислого газа в атмосфере, который является парниковым газом.
2. ОБОРУДОВАНИЕ ДЛЯ ПОДГОТОВКИ ДОБЫВАЕМОГО ГАЗА.
АБСОРБЕРЫ
Система сбора и подготовки газа и конденсата предназначена для сбора продукции скважин и подготовки газа и конденсата. Она включает шлейфы, газосборные промысловые коллекторы, установки комплексной подготовки газа (УКПГ), дожимные компрессорные станции (ДКС), газо- перерабатывающий завод (ГПЗ).
Система сбора зависит от размера и конфигурации месторождения, числа залежей, пластовых и устьевых давлений и температур, запасов газа и конденсата, дебитов скважин, содержания конденсата в газе, наличия кислых компонентов, климатических условий, в которых находится месторождение.
Система сбора и подготовки газа и конденсата проектируется и выбирается на весь срок разработки месторождения на основе технико- экономических расчетов.
2.1 Абсорбционная очистка газов
Некоторые жидкости и твердые вещества при контакте с многокомпонентной газовой средой способны избирательно извлекать из нее отдельные ингредиенты и поглощать (сорбировать) их.
Абсорбция - поглощение газов или паров из газовых или парогазовых смесей жидкими поглотителями, называемыми абсорбентами. Возможность осуществления процесса абсорбции основывается на растворимости газов в жидкостях. Процесс абсорбции является избирательным и обратимым, что дает возможность применять его не только с целью получения растворов газов в жидкостях, но также и для разделения газовых или паровых смесей.
В последнем случае после избирательной абсорбции одного или нескольких компонентов из газовой или паровой смеси проводят десорбцию - выделение этих компонентов из жидкости - и таким образом осуществляют разделение. Регенерированный абсорбент вновь возвращается на абсорбцию (круговой процесс).
Поглощение газа может происходить либо за счет его растворения в абсорбенте, либо в результате его химического взаимодействия с абсорбентом. В первом случае процесс называют физической абсорбцией, а во втором случае - хемосорбцией. Возможно также сочетание обоих механизмов процесса. Абсорбируемые компоненты газовой смеси называют абсорбтивом, а не абсорбируемые - инертом.
Абсорбентами служат индивидуальные жидкости или растворы активного компонента в жидком растворителе. Во всех случаях к абсорбентам предъявляют ряд требований, среди которых наиболее существенными являются: высокая абсорбционная способность, селективность, низкое давление пара, химическая инертность по отношению к распространенным конструкционным материалам (при физической абсорбции - также к компонентам газовой смеси), не токсичность, огне- и взрывобезопасность, доступность и не высокая стоимость.
При проведении абсорбции в качестве абсорбентов применяют воду, органические растворители, не вступающие в реакцию с извлекаемым газом, и водные растворы этих веществ. При хемосорбции в качестве абсорбента используют водные растворы солей, органические вещества и водные суспензии различных веществ.
Если растворимость газов при 0°С и парциальном давлении 101,3 кПа составляет сотни грамм на 1кг абсорбента, то такие пары называют хорошо растворимыми. Для удаления из технических выбросов таких газов, как NH3, НСl и HF, целесообразно применять в качестве абсорбента воду. Нецелесообразно использовать воду для очистки выбросов с нерастворимыми в ней органическими примесями. Подобные загрязнители как правило хорошо поглощаются органическими жидкостями, среди которых могут использоваться как абсорбенты высококипящие вещества, такие как этаноламины и тяжелые предельные углеводороды (минеральные масла). Абсорбенты, применяемые для очистки отходящих газов, приведены в таблице 2.1.
Таблица 2.1 - Абсорбенты, применяемые для очистки отходящих газов
Поглощаемые компоненты | Абсорбенты |
Оксиды азота N2O3, NO2, N2O5 | Вода, водные растворы и суспензии: NaOH, Na2CO3, NaHCO3, KОН, K2СО3, КНСОз, Са(ОН)2, СaСО3, Mg(OH)2, MgCO3, Ba(OH)2, ВаСО3, NH4HCO3 |
Оксид азота NO | Растворы FeCl2, FeSO4, Na2S2O3, NaHCO3, Na2SO3, NaHSO3 |
Диоксид серы SO2 | Вода, водные растворы: Na2SO3 (18—25%-ные), NH4OH (5—15%-ные), Са(ОН)2, Na2CO3 (15— 20%- ные), NaOH (15—25%-ные), KОН, (NН4)2SО3 (20—25%-ные), ZnSO3, K2СО3; суспензии CaO, MgO, СаСОз, ZnO, золы; ксилидин—вода в соот ношении l : 1, диметиланилин C6H3(CH3)2NH2 |
Сероводород H2S | Водный раствор Na2CO3 + Na3AsO4 (Na2 HasO3); водный раствор Аs2О3 (8—10 г/л) + NН3 (1,2—1,5 г/л) + (NH4)3AsO3 (3,5—6 г/л); моноэтаноламин (10—15%-ный раствор); растворы K3РO4 (40— 50%-ные), NH4ОH, K2CO3, Na2CO3, CaCN2, на триевая соль антрахинондисульфокислоты |
Оксид углерода СО | Жидкий азот; медно-аммиачные растворы [Сu(NН3)]n×СОСН |
Диоксид углерода СО2 | Водные растворы Nа2СО3, K2СО3, NaOH, KОН, Са(ОН)2, NH40H, этаноламины RNH2, R2NH4 |
Хлор Сl2 | Растворы NaOH, KОН, Са(ОН)2, Na2CO3, K2СО3, MgCO3, СаСО3, Na2S2O3; тетрахлоридметан CCl4 |
Хлористый водород HCl | Вода, растворы NaOH, KОН, Ca(OH)2, Na2CO3, K2CO3 |
Соединения фтора HF, SiF4 | Вода, растворы Na2CO3, NaOH, Са(ОН)2 |