ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 06.11.2023
Просмотров: 231
Скачиваний: 4
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
1.4. Фильтрационно-ёмкостные параметры коллекторов.
Реальные пористые среды в подземной гидромеханике представляются идеализированными моделями - фиктивным и идеальным грунтами. Фиктивный грунт - среда, состоящая из шариков, в частности, одного размера, идеальный - параллельные трубочки одного или разного диаметра.
Основные характеристики пористых сред: пористость, просветность, гранулометрический состав, эффективный диаметр или гидравлический диаметр пор, удельная поверхность, механические свойства (упругость, пластичность, сопротивление разрыву и сжатию). Кроме того, введены параметры, связанные с жидкостью: насыщенность и проницаемость.
Параметры пористой среды
Пористость - это отношение объема пор Vп к объему пористой среды V
m=Vп /V (1.1)
Для фиктивного грунта, исходя из геометрических построений, Слихтер вывел зависимость для полной пористости
. (1.2)
Из формулы (1.2) имеем mo=0,259 при=60о и mo=0,476 при =90о.
Просветность - это отношение площади просветов fп ко всей площади сечения f:
n =fп /f (1.3)
Просветность n фиктивного грунта вычисляется по формуле
, (1.4)
что даёт ms=0,0931 при =60о и ms=0,476 при =90о.
Эффективный диаметр определяют по гранулометрическому составу, или по формуле веса средней частицы
, (1.5)
где di- средний диаметр i -ой фракции; ni - массовая или счетная доля i - ой фракции.
Для идеального грунта имеется связь радиуса пор с диаметром частиц фиктивного грунта
(1.6)
Пористость бывает полная, открытая, эффективная. В последнем случае под объемом пор понимается объем открытых пор занятых подвижной жидкостью, т.е. того объёма, через который может протекать жидкость. Измеряется коэффициент пористости в долях единицы или в процентах объема породы. По происхождению поры и другие пустоты подразделяются на первичные и вторичные. К первичным пустотам относят пустоты между зернами, промежутки между плоскостями наслоения и т.д., образующиеся в процессе осадконакопления и формирования породы. К вторичным – поры, возникшие в результате последующих процессов разлома и дробления породы, растворения, возникновения трещин (например, вследствие доломитизации) и др. Структура порового пространства пород обусловлена гранулометрическим составом частиц, их формой, химическим составом пород, происхождением пор, а также соотношением количества больших и малых пор.
В большой степени свойства пористых сред зависят от размеров поровых каналов. По величине поровые каналы нефтяных пластов условно разделяются на три группы:
1) сверхкапиллярные – более 0,5 мм;
2) капиллярные – от 0,5 до 0,0002 мм (0,2 мкм);
3) субкапиллярные — менее 0,0002 мм (0,2 мкм). По крупным (сверхкапиллярным) каналам и порам движение нефти, воды и газа происходит свободно, а по капиллярным – при значительном участии капиллярных сил.
В субкапиллярных каналах жидкости в такой степени удерживаются силой притяжения стенок каналов (вследствие малого расстояния между стенками канала жидкость в ней находится в сфере действия молекулярных сил материала породы), что практически в природных условиях перемещаться в них не могут.
Породы, поры которых представлены в основном субкапиллярными каналами, независимо от пористости практически непроницаемы для жидкостей и газов (глина, глинистые сланцы). Хорошие коллекторы нефти – те породы, поры которых представлены в основном капиллярными каналами достаточно большого сечения, а также сверхкапиллярными порами. Из сказанного следует, что при существующих в естественных условиях перепадах давлений не во всех пустотах жидкости и газы находятся в движении.
В реальных условиях твердые зерна породы обволакиваются тонкой плёнкой, остающейся неподвижной даже при значительных градиентах давления. В этом случае подвижный флюид занимает объём, меньший Vп. Кроме того , в реальной пористой среде есть тупиковые поры, в которых движения жидкости не происходит. Таким образом, наряду с полной пористостью часто пользуются понятием открытой и динамической пористостостями.
Коэффициентом открытой пористости m0 принято называть отношение объема открытых, сообщающихся пор к объему образца:
(1.7)
где Vпо – объем, занятый подвижной жидкостью.
Динамическая пористость характеризует относительный объем пор и пустот, через которые могут фильтроваться нефть и газ в условиях, существующих в пласте.
В дальнейшем под пористостью мы будем понимать динамическую пористость, кроме специально оговорённых случаев.
Удельная поверхность - это суммарная площадь поверхности частиц, содержащихся в единице объема пористой среды.
Для фиктивного грунта
(1.8)
Удельная поверхность нефтесодержащих пород с достаточной точностью определяется формулой
(1.9)
где k - проницаемость в дарси [мкм2].
Среднее значение Sуд для нефтесодержащих пород изменяется в пределах 40 тыс. - 230 тыс. м2/м3. Породы с удельной поверхностью большей 230тыс. м2/м3 непроницаемы или слабопроницаемы (глины, глинистые пески и т.д.).
Насыщенность - это отношение объема жидкости Vf, содержащейся в порах, к объему пор Vп
(1.10)
Проницаемость - это параметр породы, характеризующий ее способность пропускать жидкие и газообразные среды. Физический смысл проницаемости k заключается в том, что она характеризует площадь сечения каналов пористой среды, по которым происходит фильтрация.
Величина проницаемости зависит от размера пор для модели идеального грунта с трубками радиуса R
, (1.11)
где R - мкм; k - д.
Для реальных сред радиус пор связан с проницаемостью формулой Котяхова
, (1.12)
где k -д; R - м; - структурный коэффициент (=0.5035/m1,1 - для зернистых сред).
Т.к. радиус пор связан с удельной поверхностью, то с ней связана и проницаемость
, (1.13)
Проницаемость горных пород меняется в широких пределах: крупнозернистый песчаник - 1-0.1д; плотные песчаники - 0.01-0.001д.
Параметры трещинной среды.
Коллекторские свойства трещинных горных пород характеризуются густотой и раскрытостью трещин, которые определяют трещинную пористость и проницаемость, обусловленную наличием в породе трещин.
Трещиноватость - отношение объёма трещин Vт ко всему объёму V трещинной среды.
. (1.14)
Коэффициент густоты трещин равен отношению суммарной протяженности трещин к поверхности фильтрации
(1.15)
где а – суммарная протяженность трещин; F – площадь фильтрации.
Трещинная пористость mт (ее иногда по аналогии с коэффициентом пористости обычных коллекторов называют коэффициентом трещиноватости) определяется отношением объема трещин к объему образца породы:
, (1.16)
где b – раскрытие трещины.
Для трещинно-пористой среды вводят суммарную (общую) пористость, прибавляя к трещиноватости пористость блоков.
Из (1.16) следует, что для идеализированной трещинной среды
mт=тαbт, (1.17)
где bт - раскрытость; т - безразмерный коэффициент, равный 1,2, 3 для одномерного, плоского и пространственного случаев, соответственно.
Для реальных пород значение коэффициента зависит от геометрии систем трещин в породе.
Для квадратной сетки трещин (плоский случай) αт=1 / lт, где lт - размер блока породы. Средняя длина трещин l* равняется среднему размеру блока породы и равна
l*=1 / αт . (1.18)
Трещинный пласт - деформируемая среда. В первом приближении можно считать
, (1.19)
где bт0 - ширина трещины при начальном давлении р0 ; *т=п l/bт0 - сжимаемость трещины; п - сжимаемость материалов блоков; l - среднее расстояние между трещинами. Для трещинных сред l/ bт >100 .
Проницаемость трещиноватых сред равна
(1.20)
Для трещиновато-пористой среды общая проницаемость определяется как сумма межзерновой и трещинной проницаемостей.
1.5. Насыщенность коллекторов
Фазовая и относительная проницаемости для различных фаз зависят от нефте–, газо– и водонасыщенности порового пространства породы, градиента давления, физико-химических свойств жидкостей и поровых фаз.
Насыщенность – один из важных параметров продуктивных пластов, тесно связанный с фазовой проницаемостью и характеризует водонасыщенность (Sв), газонасыщенность (Sг), нефтенасыщенность (Sн).
Предполагается, что продуктивные пласты сначала были насыщены водой. Водой были заполнены капилляры, каналы, трещины. При миграции и аккумуляции углеводороды, вследствие меньшей плотности, стремятся к верхней части ловушки, выдавливая вниз воду. Вода легче всего уходит из трещин и каналов. Из капиллярных пор и микротрещин вода плохо уходит в силу капиллярных явлений. Она может удерживаться молекулярно-поверхностными и капиллярными силами. Таким образом, в пласте находится остаточная (погребенная) вода. Количество остаточной воды (Sв.ост.) связано с генетическими особенностями формирования залежей нефти и газа. Её величина зависит и от содержания цемента в коллекторах, и в частности, от содержания в них глинистых минералов: каолинита, монтмориллонита, гидрослюд и других.
Обычно, для сформированных нефтяных месторождений остаточная водонасыщенность изменяется в диапазоне от 6 до 35 %. Соответственно, нефтенасыщенность (SН), равная 65 % и выше (до 90 %), в зависимости от "созревания" пласта, считается хорошим показателем.
Однако, эта закономерность наблюдается далеко не для всех регионов. Например, в Западной Сибири встречается много, так называемых, недонасыщенных нефтью пластов. В залежах иногда наблюдаются переходные зоны (ПЗ), в которых содержится рыхлосвязанная вода. Толщины ПЗ могут достигать десятков метров. При создании депрессий на забоях добывающих скважин вода из этих зон попадает в фильтрационные потоки и увеличивает обводнённость продукции, что осложняет выработку запасов нефти. Такие явления характерны для месторождений: Суторминского, Советско-Соснинского, Талинского, Средневасюганского и др.
В пределах нефтяных залежей, большая начальная нефтенасыщенность отмечается в купольной части структур, к зоне водонефтяного контакта (ВНК) ее величина, как правило, может значительно снижаться. Остаточная водонасыщенность, обусловленная капиллярными силами, не влияет на основную фильтрацию нефти и газа.
Количество углеводородов, содержащихся в продуктивном пласте, зависит от насыщенности порового пространства породы водой, нефтью и газом.
Водонасыщенность (SВ) характеризует отношение объёма открытых пор, заполненных водой к общему объёму пор горной породы. Аналогичны определение для нефте- (SН) и газонасыщенности (SГ):
, (1.21)
где VВ, VН, VГ – соответственно объёмы воды, нефти и газа в поровом объёме (Vпор) породы.
От объёма остаточной воды зависит величина статической полезной ёмкости коллектора.
Статическая полезная ёмкость коллектора (Пст) характеризует объём пор и пустот, которые могут быть заняты нефтью или газом. Эта величина оценивается как разность открытой пористости и объёма остаточной воды:
Пст = Vсоб. пор – Vв. ост.. (1.22)
В зависимости от перепада давления, существующих в пористой среде, свойств жидкостей, поверхности пород та или иная часть жидкости (неподвижные пленки у поверхности породы, капиллярно удерживаемая жидкость) не движется в порах. Её величина влияет на динамическую полезную ёмкость коллектора.
Для месторождений параметр насыщенности нормирован и равен единице (S = 1) или 100 %. То есть, для нефтяных месторождений справедливо следующее соотношение:
SН + SВ = 1. (1.23)
Для газонефтяных месторождений соответственно:
SВ + SН + SГ = 1, Sг = 1 – (SB + SH). (1.24)
На практике насыщенность породы определяют в лабораторных условиях по керновому материалу в аппаратах Закса или по данным геофизических исследований в открытых стволах скважин.
1.6 Проницаемость
Абсолютно непроницаемых тел в природе нет. Располагая соответствующим давлением, можно продавать жидкости и газы через все тела. Однако при существующих в нефтяных пластах перепадах давлений многие породы оказываются практически непроницаемыми для жидкостей и газов (например, глины, сланцы, изверженные породы и др.). Это можно объяснить тем, что указанные породы обладают капиллярными и субкапиллярными порами весьма малых размеров, оказывающими большое сопротивление движению жидкости и даже газа. Почти все осадочные породы, слагающие нефтяные и газовые пласты – пески, песчаники, известняки, доломиты и др. – обладают той или иной проницаемостью.
При эксплуатации нефтяных и газовых месторождений в пористой среде движутся нефть, газ, вода или нефте-водо-газовые смеси. В зависимости от того, какой флюид движется в пористой среде и каков характер движения, проницаемость одной и той же среды может быть различной.
Поэтому для характеристики проницаемости нефтесодержащих пород введены понятия абсолютной, эффективной и относительной проницаемости.
Абсолютная или физическая проницаемость - это проницаемость пористой среды при движении в ней какой-либо одной фазы - газа или однородной жидкости без физико-химического взаимодействия между жидкостью и пористой средой и при условии полного заполнения пор среды газом или жидкостью.
Эффективная (фазовая) проницаемость - проницаемость пористой среды для данного газа или жидкости при содержании в порах другой фазы - жидкой или газовой.
Относительная проницаемость - отношение эффективной проницаемости к абсолютной.
Для количественного определения проницаемости пород может быть использован линейный закон фильтрации Дарси, по которому скорость фильтрации жидкости в пористой среде пропорциональна перепаду давления и обратно пропорциональна вязкости:
( 1.25 )
где Q – объемный расход жидкости через породу за 1 сек, м3/с;
- скорость линейной фильтрации, м/с;
- динамическая вязкость жидкости, Н.сек/м2;
L – длина пористой среды, м;
F – площадь фильтрации, м2;
Р – перепад давления на длине образца, Н/м2;
k – коэффициент пропорциональности, который называется к о э ф ф и ц и е н т о м п р о н и ц а е м о с т и п о р о д ы, м2.
Величина этого коэффициент из уравнения ( 1.25 ) будет равна:
( 1.26 )
Эту формулу применяют при определении в лабораторных условиях проницаемости по жидкости.
При измерении проницаемости при помощи газа будем иметь:
( 1.27 )
где Q - объемный расход газа при среднем давлении Рср по длине образца.
Практически при малых длинах испытуемых образцов среднее давление
( 1.28 )
где Р1 и Р2 – соответственно давление на входе газа в образец и на выходе из него.
Полагая, что процесс расширения газа при его фильтрации через образец происходит изотермически, можно написать согласно закону Бойля-Мариотта
( 1.29 )
где Q0 – расход газа при атмосферном давлении Р0.
Размерность величин, входящих в формулы (1.25) и (1.26), в системе CCS следующая: [Q] – см3/сек; [ ] – пуаз = дн сек/см2; [L] – см; [F] – см2; [Р] – дн/см2.
Следовательно, размерность проницаемости в системе CGS будет
(1.30)
т.е. коэффициент проницаемости имеет размерность площади. Физический смысл этого заключается в том, что проницаемость характеризует величину площади сечения поровых каналов, по которым происходит фильтрация.
Единица проницаемости 1 см2 велика и неудобна для практических расчетов. За единицу проницаемости в 1 дарси принимают проницаемость такой пористой среды, при фильтрации через образец которой площадью 1 см2 при перепаде давления в 1 ат на длине 1 см расход жидкости вязкостью в 1 сантипуаз составляет 1 см3/сек.
Эта единица получила повсеместное признание под наименованием д а р с и. Величина, равная 0,001 дарси, называется м и л л и д а р с и.
Учитывая, что 1 сантипуаз = 0,01 пуаза и 1 ат = 1 013,3х103 дн/см2, получим следующее соотношение:
(1.31)
1.7. Зависимость проницаемости от насыщенности коллекторов
В условиях реальных пластов при разработке месторождений возникают различные виды многофазных потоков:
- движение нефти и воды в нефтяных залежах;
- движение газированной нефти;
- трехфазного потока нефти, воды и газа одновременно.
Х
Рис. 3. Зависимость относительной проницаемости песка для нефти – 1, для воды – 2 от водонасыщености порового пространства
арактеры этих потоков изучены экспериментально. Результаты исследований обычно изображаются в виде графиков (диаграмм фазовых относительных проницаемостей) зависимости относительной проницаемости от степени насыщенности порового пространства различными фазами.
Фильтрация нефти и воды через песок редставлена на рис. 3.
Если в несцементированном песке содержится 20 % воды, относительная проницаемость для нее все еще остается равной нулю. Вода будет себя вести как неподвижная фаза, за счет проявления капиллярных и молекулярно-поверхностных сил. Вода удерживается в субкапиллярных и тупиковых (открытых, но не сообщающихся) порах, в местных контактах зерен, в виде неподвижных полимолекулярных пленок и микрокапель на поверхности породы и др.
При возрастании водонасыщенности выше порогового значения, вода начинает участвовать в фильтрации. Как видно из приведенных зависимостей (рис. 3), при возрастании водонасыщенности до 30 %, относительная проницаемость для нефти снижается в два раза. Если водонасыщенность песка достигнет 80 % (рис. 3) относительная проницаемость для нефти равна нулю. Остаточная нефть будет прочно удерживаться породой за счет капиллярных и молекулярно-поверхностных сил. Для других пород: песчаников, известняков, доломитов, процент остаточной нефтенасыщенности (как неподвижной остаточной фазы) еще выше.
При разработке и эксплуатации нефтяных месторождений необходимо применять меры для предохранения нефтяных пластов и забоев скважин от преждевременного обводнения.
К
Рис. 4. Зависимость относительной проницаемости пористых известняков и доломитов для газа и жидкости от водонасыщенности
роме того, при проникновении в породу фильтрата бурового раствора возрастает водонасыщенность в призабойной зоне пласта (ПЗП), что значительно уменьшает относительную проницаемость пород для нефти и, как следствие, уменьшается дебит скважины, усложняется и удлиняется процесс освоения скважины. Водные фильтраты промывочных жидкостей имеют, как правило, гидрофильную природу, хорошо смачивают и прочно удерживаются породами пласта. Удаление их из ПЗП затруднено даже при повышенных депрессиях (разность между пластовым и забойным давлением).
Движение смеси жидкости и газа на примере их фильтрации через пористые известняки и доломиты проиллюстрировано на рисунке 4.
Анализ приведенных зависимостей отражает закономерно-сти в движении жидкости и газа в различных типах коллекторов. При содержании в поровом пространстве до 30 % жидкости для песков, известняков, доломитов, а в песчаниках до 60 %, относительная проницаемость для жидкой фазы (k'Ж) равна нулю.
Относительная проницаемость для газа (k'Г) для песков, известняков и доломитов
60 %, песчаников
30 %. Жидкость с увеличением ее содержания в пористой среде приблизительно от 30 до 60 % не влияет на фильтрацию газа. То есть, при обводнённости до 60 % из пласта можно добывать чистый газ.
1.4. Фильтрационно-ёмкостные параметры коллекторов.
Реальные пористые среды в подземной гидромеханике представляются идеализированными моделями - фиктивным и идеальным грунтами. Фиктивный грунт - среда, состоящая из шариков, в частности, одного размера, идеальный - параллельные трубочки одного или разного диаметра.
Основные характеристики пористых сред: пористость, просветность, гранулометрический состав, эффективный диаметр или гидравлический диаметр пор, удельная поверхность, механические свойства (упругость, пластичность, сопротивление разрыву и сжатию). Кроме того, введены параметры, связанные с жидкостью: насыщенность и проницаемость.
Параметры пористой среды
Пористость - это отношение объема пор Vп к объему пористой среды V
m=Vп /V (1.1)
Для фиктивного грунта, исходя из геометрических построений, Слихтер вывел зависимость для полной пористости
. (1.2)
Из формулы (1.2) имеем mo=0,259 при=60о и mo=0,476 при =90о.
Просветность - это отношение площади просветов fп ко всей площади сечения f:
n =fп /f (1.3)
Просветность n фиктивного грунта вычисляется по формуле
, (1.4)
что даёт ms=0,0931 при =60о и ms=0,476 при =90о.
Эффективный диаметр определяют по гранулометрическому составу, или по формуле веса средней частицы
, (1.5)
где di- средний диаметр i -ой фракции; ni - массовая или счетная доля i - ой фракции.
Для идеального грунта имеется связь радиуса пор с диаметром частиц фиктивного грунта
(1.6)
Пористость бывает полная, открытая, эффективная. В последнем случае под объемом пор понимается объем открытых пор занятых подвижной жидкостью, т.е. того объёма, через который может протекать жидкость. Измеряется коэффициент пористости в долях единицы или в процентах объема породы. По происхождению поры и другие пустоты подразделяются на первичные и вторичные. К первичным пустотам относят пустоты между зернами, промежутки между плоскостями наслоения и т.д., образующиеся в процессе осадконакопления и формирования породы. К вторичным – поры, возникшие в результате последующих процессов разлома и дробления породы, растворения, возникновения трещин (например, вследствие доломитизации) и др. Структура порового пространства пород обусловлена гранулометрическим составом частиц, их формой, химическим составом пород, происхождением пор, а также соотношением количества больших и малых пор.
В большой степени свойства пористых сред зависят от размеров поровых каналов. По величине поровые каналы нефтяных пластов условно разделяются на три группы:
1) сверхкапиллярные – более 0,5 мм;
2) капиллярные – от 0,5 до 0,0002 мм (0,2 мкм);
3) субкапиллярные — менее 0,0002 мм (0,2 мкм). По крупным (сверхкапиллярным) каналам и порам движение нефти, воды и газа происходит свободно, а по капиллярным – при значительном участии капиллярных сил.
В субкапиллярных каналах жидкости в такой степени удерживаются силой притяжения стенок каналов (вследствие малого расстояния между стенками канала жидкость в ней находится в сфере действия молекулярных сил материала породы), что практически в природных условиях перемещаться в них не могут.
Породы, поры которых представлены в основном субкапиллярными каналами, независимо от пористости практически непроницаемы для жидкостей и газов (глина, глинистые сланцы). Хорошие коллекторы нефти – те породы, поры которых представлены в основном капиллярными каналами достаточно большого сечения, а также сверхкапиллярными порами. Из сказанного следует, что при существующих в естественных условиях перепадах давлений не во всех пустотах жидкости и газы находятся в движении.
В реальных условиях твердые зерна породы обволакиваются тонкой плёнкой, остающейся неподвижной даже при значительных градиентах давления. В этом случае подвижный флюид занимает объём, меньший Vп. Кроме того , в реальной пористой среде есть тупиковые поры, в которых движения жидкости не происходит. Таким образом, наряду с полной пористостью часто пользуются понятием открытой и динамической пористостостями.
Коэффициентом открытой пористости m0 принято называть отношение объема открытых, сообщающихся пор к объему образца:
(1.7)
где Vпо – объем, занятый подвижной жидкостью.
Динамическая пористость характеризует относительный объем пор и пустот, через которые могут фильтроваться нефть и газ в условиях, существующих в пласте.
В дальнейшем под пористостью мы будем понимать динамическую пористость, кроме специально оговорённых случаев.
Удельная поверхность - это суммарная площадь поверхности частиц, содержащихся в единице объема пористой среды.
Для фиктивного грунта
(1.8)
Удельная поверхность нефтесодержащих пород с достаточной точностью определяется формулой
(1.9)
где k - проницаемость в дарси [мкм2].
Среднее значение Sуд для нефтесодержащих пород изменяется в пределах 40 тыс. - 230 тыс. м2/м3. Породы с удельной поверхностью большей 230тыс. м2/м3 непроницаемы или слабопроницаемы (глины, глинистые пески и т.д.).
Насыщенность - это отношение объема жидкости Vf, содержащейся в порах, к объему пор Vп
(1.10)
Проницаемость - это параметр породы, характеризующий ее способность пропускать жидкие и газообразные среды. Физический смысл проницаемости k заключается в том, что она характеризует площадь сечения каналов пористой среды, по которым происходит фильтрация.
Величина проницаемости зависит от размера пор для модели идеального грунта с трубками радиуса R
, (1.11)
где R - мкм; k - д.
Для реальных сред радиус пор связан с проницаемостью формулой Котяхова
, (1.12)
где k -д; R - м; - структурный коэффициент (=0.5035/m1,1 - для зернистых сред).
Т.к. радиус пор связан с удельной поверхностью, то с ней связана и проницаемость
, (1.13)
Проницаемость горных пород меняется в широких пределах: крупнозернистый песчаник - 1-0.1д; плотные песчаники - 0.01-0.001д.
Параметры трещинной среды.
Коллекторские свойства трещинных горных пород характеризуются густотой и раскрытостью трещин, которые определяют трещинную пористость и проницаемость, обусловленную наличием в породе трещин.
Трещиноватость - отношение объёма трещин Vт ко всему объёму V трещинной среды.
. (1.14)
Коэффициент густоты трещин равен отношению суммарной протяженности трещин к поверхности фильтрации
(1.15)
где а – суммарная протяженность трещин; F – площадь фильтрации.
Трещинная пористость mт (ее иногда по аналогии с коэффициентом пористости обычных коллекторов называют коэффициентом трещиноватости) определяется отношением объема трещин к объему образца породы:
, (1.16)
где b – раскрытие трещины.
Для трещинно-пористой среды вводят суммарную (общую) пористость, прибавляя к трещиноватости пористость блоков.
Из (1.16) следует, что для идеализированной трещинной среды
mт=тαbт, (1.17)
где bт - раскрытость; т - безразмерный коэффициент, равный 1,2, 3 для одномерного, плоского и пространственного случаев, соответственно.
Для реальных пород значение коэффициента зависит от геометрии систем трещин в породе.
Для квадратной сетки трещин (плоский случай) αт=1 / lт, где lт - размер блока породы. Средняя длина трещин l* равняется среднему размеру блока породы и равна
l*=1 / αт . (1.18)
Трещинный пласт - деформируемая среда. В первом приближении можно считать
, (1.19)
где bт0 - ширина трещины при начальном давлении р0 ; *т=п l/bт0 - сжимаемость трещины; п - сжимаемость материалов блоков; l - среднее расстояние между трещинами. Для трещинных сред l/ bт >100 .
Проницаемость трещиноватых сред равна
(1.20)
Для трещиновато-пористой среды общая проницаемость определяется как сумма межзерновой и трещинной проницаемостей.
1.5. Насыщенность коллекторов
Фазовая и относительная проницаемости для различных фаз зависят от нефте–, газо– и водонасыщенности порового пространства породы, градиента давления, физико-химических свойств жидкостей и поровых фаз.
Насыщенность – один из важных параметров продуктивных пластов, тесно связанный с фазовой проницаемостью и характеризует водонасыщенность (Sв), газонасыщенность (Sг), нефтенасыщенность (Sн).
Предполагается, что продуктивные пласты сначала были насыщены водой. Водой были заполнены капилляры, каналы, трещины. При миграции и аккумуляции углеводороды, вследствие меньшей плотности, стремятся к верхней части ловушки, выдавливая вниз воду. Вода легче всего уходит из трещин и каналов. Из капиллярных пор и микротрещин вода плохо уходит в силу капиллярных явлений. Она может удерживаться молекулярно-поверхностными и капиллярными силами. Таким образом, в пласте находится остаточная (погребенная) вода. Количество остаточной воды (Sв.ост.) связано с генетическими особенностями формирования залежей нефти и газа. Её величина зависит и от содержания цемента в коллекторах, и в частности, от содержания в них глинистых минералов: каолинита, монтмориллонита, гидрослюд и других.
Обычно, для сформированных нефтяных месторождений остаточная водонасыщенность изменяется в диапазоне от 6 до 35 %. Соответственно, нефтенасыщенность (SН), равная 65 % и выше (до 90 %), в зависимости от "созревания" пласта, считается хорошим показателем.
Однако, эта закономерность наблюдается далеко не для всех регионов. Например, в Западной Сибири встречается много, так называемых, недонасыщенных нефтью пластов. В залежах иногда наблюдаются переходные зоны (ПЗ), в которых содержится рыхлосвязанная вода. Толщины ПЗ могут достигать десятков метров. При создании депрессий на забоях добывающих скважин вода из этих зон попадает в фильтрационные потоки и увеличивает обводнённость продукции, что осложняет выработку запасов нефти. Такие явления характерны для месторождений: Суторминского, Советско-Соснинского, Талинского, Средневасюганского и др.
В пределах нефтяных залежей, большая начальная нефтенасыщенность отмечается в купольной части структур, к зоне водонефтяного контакта (ВНК) ее величина, как правило, может значительно снижаться. Остаточная водонасыщенность, обусловленная капиллярными силами, не влияет на основную фильтрацию нефти и газа.
Количество углеводородов, содержащихся в продуктивном пласте, зависит от насыщенности порового пространства породы водой, нефтью и газом.
Водонасыщенность (SВ) характеризует отношение объёма открытых пор, заполненных водой к общему объёму пор горной породы. Аналогичны определение для нефте- (SН) и газонасыщенности (SГ):
, (1.21)
где VВ, VН, VГ – соответственно объёмы воды, нефти и газа в поровом объёме (Vпор) породы.
От объёма остаточной воды зависит величина статической полезной ёмкости коллектора.
Статическая полезная ёмкость коллектора (Пст) характеризует объём пор и пустот, которые могут быть заняты нефтью или газом. Эта величина оценивается как разность открытой пористости и объёма остаточной воды:
Пст = Vсоб. пор – Vв. ост.. (1.22)
В зависимости от перепада давления, существующих в пористой среде, свойств жидкостей, поверхности пород та или иная часть жидкости (неподвижные пленки у поверхности породы, капиллярно удерживаемая жидкость) не движется в порах. Её величина влияет на динамическую полезную ёмкость коллектора.
Для месторождений параметр насыщенности нормирован и равен единице (S = 1) или 100 %. То есть, для нефтяных месторождений справедливо следующее соотношение:
SН + SВ = 1. (1.23)
Для газонефтяных месторождений соответственно:
SВ + SН + SГ = 1, Sг = 1 – (SB + SH). (1.24)
На практике насыщенность породы определяют в лабораторных условиях по керновому материалу в аппаратах Закса или по данным геофизических исследований в открытых стволах скважин.
1.6 Проницаемость
Абсолютно непроницаемых тел в природе нет. Располагая соответствующим давлением, можно продавать жидкости и газы через все тела. Однако при существующих в нефтяных пластах перепадах давлений многие породы оказываются практически непроницаемыми для жидкостей и газов (например, глины, сланцы, изверженные породы и др.). Это можно объяснить тем, что указанные породы обладают капиллярными и субкапиллярными порами весьма малых размеров, оказывающими большое сопротивление движению жидкости и даже газа. Почти все осадочные породы, слагающие нефтяные и газовые пласты – пески, песчаники, известняки, доломиты и др. – обладают той или иной проницаемостью.
При эксплуатации нефтяных и газовых месторождений в пористой среде движутся нефть, газ, вода или нефте-водо-газовые смеси. В зависимости от того, какой флюид движется в пористой среде и каков характер движения, проницаемость одной и той же среды может быть различной.
Поэтому для характеристики проницаемости нефтесодержащих пород введены понятия абсолютной, эффективной и относительной проницаемости.
Абсолютная или физическая проницаемость - это проницаемость пористой среды при движении в ней какой-либо одной фазы - газа или однородной жидкости без физико-химического взаимодействия между жидкостью и пористой средой и при условии полного заполнения пор среды газом или жидкостью.
Эффективная (фазовая) проницаемость - проницаемость пористой среды для данного газа или жидкости при содержании в порах другой фазы - жидкой или газовой.
Относительная проницаемость - отношение эффективной проницаемости к абсолютной.
Для количественного определения проницаемости пород может быть использован линейный закон фильтрации Дарси, по которому скорость фильтрации жидкости в пористой среде пропорциональна перепаду давления и обратно пропорциональна вязкости:
( 1.25 )
где Q – объемный расход жидкости через породу за 1 сек, м3/с;
- скорость линейной фильтрации, м/с;
- динамическая вязкость жидкости, Н.сек/м2;
L – длина пористой среды, м;
F – площадь фильтрации, м2;
Р – перепад давления на длине образца, Н/м2;
k – коэффициент пропорциональности, который называется к о э ф ф и ц и е н т о м п р о н и ц а е м о с т и п о р о д ы, м2.
Величина этого коэффициент из уравнения ( 1.25 ) будет равна:
( 1.26 )
Эту формулу применяют при определении в лабораторных условиях проницаемости по жидкости.
При измерении проницаемости при помощи газа будем иметь:
( 1.27 )
где Q - объемный расход газа при среднем давлении Рср по длине образца.
Практически при малых длинах испытуемых образцов среднее давление
( 1.28 )
где Р1 и Р2 – соответственно давление на входе газа в образец и на выходе из него.
Полагая, что процесс расширения газа при его фильтрации через образец происходит изотермически, можно написать согласно закону Бойля-Мариотта
( 1.29 )
где Q0 – расход газа при атмосферном давлении Р0.
Размерность величин, входящих в формулы (1.25) и (1.26), в системе CCS следующая: [Q] – см3/сек; [ ] – пуаз = дн сек/см2; [L] – см; [F] – см2; [Р] – дн/см2.
Следовательно, размерность проницаемости в системе CGS будет
(1.30)
т.е. коэффициент проницаемости имеет размерность площади. Физический смысл этого заключается в том, что проницаемость характеризует величину площади сечения поровых каналов, по которым происходит фильтрация.
Единица проницаемости 1 см2 велика и неудобна для практических расчетов. За единицу проницаемости в 1 дарси принимают проницаемость такой пористой среды, при фильтрации через образец которой площадью 1 см2 при перепаде давления в 1 ат на длине 1 см расход жидкости вязкостью в 1 сантипуаз составляет 1 см3/сек.
Эта единица получила повсеместное признание под наименованием д а р с и. Величина, равная 0,001 дарси, называется м и л л и д а р с и.
Учитывая, что 1 сантипуаз = 0,01 пуаза и 1 ат = 1 013,3х103 дн/см2, получим следующее соотношение:
(1.31)
1.7. Зависимость проницаемости от насыщенности коллекторов
В условиях реальных пластов при разработке месторождений возникают различные виды многофазных потоков:
- движение нефти и воды в нефтяных залежах;
- движение газированной нефти;
- трехфазного потока нефти, воды и газа одновременно.
Х
Рис. 3. Зависимость относительной проницаемости песка для нефти – 1, для воды – 2 от водонасыщености порового пространства
арактеры этих потоков изучены экспериментально. Результаты исследований обычно изображаются в виде графиков (диаграмм фазовых относительных проницаемостей) зависимости относительной проницаемости от степени насыщенности порового пространства различными фазами.
Фильтрация нефти и воды через песок редставлена на рис. 3.
Если в несцементированном песке содержится 20 % воды, относительная проницаемость для нее все еще остается равной нулю. Вода будет себя вести как неподвижная фаза, за счет проявления капиллярных и молекулярно-поверхностных сил. Вода удерживается в субкапиллярных и тупиковых (открытых, но не сообщающихся) порах, в местных контактах зерен, в виде неподвижных полимолекулярных пленок и микрокапель на поверхности породы и др.
При возрастании водонасыщенности выше порогового значения, вода начинает участвовать в фильтрации. Как видно из приведенных зависимостей (рис. 3), при возрастании водонасыщенности до 30 %, относительная проницаемость для нефти снижается в два раза. Если водонасыщенность песка достигнет 80 % (рис. 3) относительная проницаемость для нефти равна нулю. Остаточная нефть будет прочно удерживаться породой за счет капиллярных и молекулярно-поверхностных сил. Для других пород: песчаников, известняков, доломитов, процент остаточной нефтенасыщенности (как неподвижной остаточной фазы) еще выше.
При разработке и эксплуатации нефтяных месторождений необходимо применять меры для предохранения нефтяных пластов и забоев скважин от преждевременного обводнения.
К
Рис. 4. Зависимость относительной проницаемости пористых известняков и доломитов для газа и жидкости от водонасыщенности
роме того, при проникновении в породу фильтрата бурового раствора возрастает водонасыщенность в призабойной зоне пласта (ПЗП), что значительно уменьшает относительную проницаемость пород для нефти и, как следствие, уменьшается дебит скважины, усложняется и удлиняется процесс освоения скважины. Водные фильтраты промывочных жидкостей имеют, как правило, гидрофильную природу, хорошо смачивают и прочно удерживаются породами пласта. Удаление их из ПЗП затруднено даже при повышенных депрессиях (разность между пластовым и забойным давлением).
Движение смеси жидкости и газа на примере их фильтрации через пористые известняки и доломиты проиллюстрировано на рисунке 4.
Анализ приведенных зависимостей отражает закономерно-сти в движении жидкости и газа в различных типах коллекторов. При содержании в поровом пространстве до 30 % жидкости для песков, известняков, доломитов, а в песчаниках до 60 %, относительная проницаемость для жидкой фазы (k'Ж) равна нулю.
Относительная проницаемость для газа (k'Г) для песков, известняков и доломитов
При газонасыщенности песка и песчаника до 10-15 %, известняка до 25–30 %, газ остается неподвижной фазой. Относительная проницаемость для него (k'Г) равна нулю. Однако наличие свободного газа, выделившегося из нефти в пласте, отрицательно влияют на условия ее фильтрации.
При небольших количествах свободного газа, находящегося в поровом пространстве, сильно снижается проницаемость среды для нефти.
Относительные проницаемости для жидкой фазы при газонасыщенности пород до 10-15 %, снижается для известняков и доломитов до 22 %, для песков до 70 %, для песчаников до 60 %.
Движение смеси нефти, воды и газа проиллюстрировано на рисунке 5, где представлены результаты экспериментального исследования газо-водо-нефтяного потока при одновременном содержании в пористой среде нефти, воды и газа в виде треугольной диаграммы.
Опытами установлено, что в зависимости от объёмного насыщения порового пространства различными компонентами возможно одно–, двух– и трёхфазное движение.
Вершины треугольника соответствуют стопроцентному насыщению породы одной из фаз; стороны, противолежащие вершинам, – нулевому насыщению породы этой фазой. Кривые, проведённые на диаграмме, ограничивают возможные области одно–, двух–, и трёхфазного потока.
Рис. 5. Области распространения одно– , двух– и трёхфазного потоков, в которых содержится: 1 – 5 % воды; 2 – 5 % нефти; 3 – 5 % газа.
При водонасыщенности до 25 % нефте-, газонасыщенность пород максимальная (45-75 %), а относительная фазовая проницаемость для воды равна нулю. При увеличении водонасыщенности до 40 %, фазовая проницаемость для нефти и газа уменьшается в 2-2,5 раза. При увеличении водонасыщенности до 80 % фильтрация флюидов в пласте стремится к нулю.
При газонасыщенности меньше 10 % и нефтенасыщенности меньше 23 % в потоке будет практически одна вода. При газонасыщенности меньше 10 % движение газа не будет происходить. При содержании в породе газа свыше 33-35 % фильтроваться будет один газ.
При нефтенасыщенности меньше 23 % движение нефти не будет происходить. При содержании воды от 20 до 30 % и газа от 10 до 18 % фильтроваться может только одна нефть.
Области, отвечающие двухфазным потокам (газ-вода, газ-нефть, вода–нефть) – промежуточные (заштрихованные), примыкают к сторонам треугольника.
Область существования трехфазного потока (совместного движения в потоке всех трех фаз) выделена двойной штриховкой. Для несцементированных песков она находится в пределах насыщенности: нефтью от 23 до 50 %, водой от 33 до 64 %, газом от 14 до 30 %.
1.8. Методы определения относительной проницаемости
Существует четыре метода измерения относительной проницаемости:
-
Измерение в лабораторных условиях по данным установившегося течения; -
Непосредственное измерение в лаборатории на основании опытов по вытеснению (процесс псевдонеустановившегося течения); -
Расчет по промысловым данным;
4. Расчет относительной проницаемости по данным капиллярного давления
Метод измерения относительной проницаемости по данным установившегося течения различных пар фаз: нефть и газ, нефть и вода, газ и вода. Опыты в большинстве случаев начинают при 100%-ном насыщении кернов смачивающей фазой (опыты по дренированию кернов). Обе фазы вводятся в керн в определенной пропорции и фильтруются до тех пор, пока на выходе из керна не будет получена та же пропорция, что и на входе. При достижении этого условия течение через керн считается установившимся, а насыщенность керна — постоянной.
Насыщенность керна различными фазами определяется одним из трех методов:
измерением удельного электросопротивления керна; для этого испытуемый керн оборудуют электродами;
весовым методом, для чего керн извлекают из прибора,
по балансу объемов нагнетаемых и извлекаемых фаз за все время опыта.
После того как одним из этих методов определена насыщенность керна, может быть рассчитана и относительная проницаемость керна для обеих фаз при данных условиях насыщенности. Затем пропорцию нагнетаемых фаз изменяют так, чтобы часть смачивающей фазы была вытеснена из керна и вновь создались условия установившегося течения и т. д. Этот процесс продолжается до тех пор, пока не будет получена кривая относительной проницаемости во всем интервале насыщенности пористой среды.
В противоположность этому методу определения относительной проницаемости может быть использован метод насыщения, при котором керн первоначально на 100% насыщают жидкой фазой.
Метод определения относительной проницаемости по данным вытеснения одной фазы другой.
Процесс вытеснения жидкости газом является неустановившимся, так как в этом случае в керн, на 100% насыщенный смачивающей фазой, подается только газ, т. е. одна фаза, а извлекаются две фазы. Если керн и обе фазы
рассматривать как одно целое, то этот процесс при измерении в объемных величинах можно считать установившимся. В отношении же массы системы этот процесс будет неустановившимся.
При расчете данных, полученных из этих опытов, должны быть удовлетворены следующие три необходимых условия или предположения:
- перепад давления, приложенный к керну, должен быть больше некоторой величины, чтобы свести до минимума любые капиллярные концевые эффекты.
- газонасыщенность керна можно брать соответствующей среднему давлению в керне, определяемому по формуле:
, (1.32)
где p1 — давление на входном конце керна, а р2— давление на выходном конце.
- течение должно происходить горизонтально; размеры керна настолько малы, а время опыта настолько непродолжительно, что влияние гравитационных сил пренебрежимо мало.
Если эти три условия удовлетворяются, то в процессе опыта необходимо измерить только два параметра:
- количество закачанного в керн газа во времени.
- количество добытой из керна нефти во времени.
При постоянстве давлений на входе в керн и на выходе в процессе опыта по этим двум параметрам можно рассчитать отношение относительных проницаемостей для газа и нефти.
Определение отношений относительных проницаемостей, но промысловым данным.
Метод основан на той же самой идее, что и метод вытеснения жидкости газом. Этим методом также определяются отношения относительных проницаемостей, но по промысловым данным.
Если считать, что движение каждой из фаз в пласте не зависит от движения другой фазы, и на основании этого записать уравнение Дарси для движения каждой фазы, то отношение относительных проницаемостей может быть определено по следующему уравнению:
. (1.33)
Если в приведенном уравнении Qги Qн— объемные расходы
газа и нефти в пластовых условиях, а перепад давления в газовой фазе равен перепаду давления в нефтяной фазе, то в выражении объемных расходов, приведенных к поверхностным условиям, отношение относительных проницаемостей примет вид:
, (1.34)
где μг и µН — вязкости газа и нефти соответственно при пластовых давлении и температуре; Вг— объемный пластовый коэффициент газа, равный отношению объема газа в пластовых условиях к объему газа при стандартных условиях; Bн— объемный пластовый коэффициент нефти, равный отношению объема нефти в пластовых условиях к объему нефти, приведенной к стандартным условиям; Г — газовый фактор; Го — количество газа, растворенного в нефти. Величины Г и Го — выражены в m3газа на m3нефти, приведенной к стандартным условиям.
Расчет относительной проницаемости по данным капиллярного давления.
Для определения относительных и абсолютных проницаемостей фильтрационным методом требуются сложные лабораторные установки и образцы большого размера. Удобный, быстрый и достаточно точный для практических расчетов метод определения проницаемости пород по небольшим их кусочкам и даже по шламу основан на использовании порометрических кривых или кривых «капиллярное давление - насыщенность пор жидкой фазой» (рис. 6).
Порометрические кривые строят по данным опыта, проводимого при помощи ртутных поромеров или методом «полупроницаемых перегородок» при изучении распределения пор по размерам. По оси ординат откладывается капиллярное давление рк, равное давлению в камере прибора, а по оси абсцисс — доля объема пор (в процентах или долях единицы), занятая ртутью, водой или керосином (если используется метод «полупроницаемых перегородок») при соответствующем значении