Файл: Теоретический анализ исследуемого процесса.rtf

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 07.11.2023

Просмотров: 236

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Введение

1. Анализ научной и патентной литературы с целью обоснования темы исследования. Обоснование общей цели исследования и конкретных задач

2. Теоретический анализ исследуемого процесса

.1 Термодинамический анализ

.2 Кинетический анализ

3. Экспериментальная часть

.1 Характеристика исходных материалов

3.2 Выбор метода эксперимента и анализа. Описание техники эксперимента

3.3 Выбор параметров исследования

4. Результаты эксперимента, их обсуждение и теоретическая обработка

600 4,2 10 25 1500 10,2 10 10,5 630 4,4 10 25,5 1530 10,4 10 11 660 4,6 10 26 1560 10,6 10 11,5 690 4,8 10 26,5 1590 10,8 10 12 720 5 10 27 1620 11 10 12,5 750 5,2 10 27,5 1650 11,2 10 Продолжение таблицы 4.2. 1 2 3 4 5 6 7 8 13 780 5,4 10 28 1680 11,4 10 13,5 810 5,6 10 28,5 1710 11,6 10 14 840 5,8 10 29 1740 11,8 10 14,5 870 6 10 29,5 1770 12 10 Таблица 4.3.Экспериментальные данные, используя в качестве осадителя раствор соды с концентрацией 4,4%, при Т=400С и различном соотношении МgCl2:Na2CO3 время, мин время, сек интервал добавления соды, мл светопогла-щение. (сила тока) время, мин время, сек интервал добавления соды, мл светопогла-щение. (сила тока) 1 2 3 4 5 6 7 8 МgCl2:Na2CO3=1:1; рН=8,9; хмg=0 0 0 0,2 84 10 600 4,2 18 0,5 30 0,4 65 10,5 630 4,4 18 1 60 0,6 50 11 660 4,6 18 1,5 90 0,8 36 11,5 690 4,8 18 2 120 1 28 12 720 5 18 2,5 150 1,2 26 12,5 750 5,2 18 3 180 1,4 21 13 780 5,4 18 3,5 210 1,6 20 13,5 810 5,6 18 4 240 1,8 19 14 840 5,8 18 4,5 270 2 18 14,5 870 6 18 5 300 2,2 18 15 900 6,2 18 5,5 330 2,4 18 15,5 930 6,4 18 6 360 2,6 18 16 960 6,6 18 6,5 390 2,8 18 16,5 990 6,8 18 1 2 3 4 5 6 7 8 7 420 3 18 17 1020 7 18 7,5 450 3,2 18 17,5 1050 7,2 18 8 480 3,4 18 18 1080 7,4 18 8,5 510 3,6 18 18,5 1110 7,6 18 9 540 3,8 18 19 1140 7,8 18 9,5 570 4 18 19,5 1170 8 18 МgCl2:Na2CO3=1:1,25; рН=9,16; хмg=0 0 0 0,2 68 12,5 750 5,2 8 0,5 30 0,4 64 13 780 5,4 8 1 60 0,6 25 13,5 810 5,6 8 1,5 90 0,8 23 14 840 5,8 8 2 120 1 13 14,5 870 6 8 2,5 150 1,2 12 15 900 6,2 8 3 180 1,4 11 15,5 930 6,4 8 3,5 210 1,6 10 16 960 6,6 8 4 240 1,8 9 16,5 990 6,8 8 4,5 270 2 8 17 1020 7 8 5 300 2,2 8 17,5 1050 7,2 8 5,5 330 2,4 8 18 1080 7,4 8 6 360 2,6 8 18,5 1110 7,6 8 6,5 390 2,8 8 19 1140 7,8 8 7 420 3 8 19,5 1170 8 8 7,5 450 3,2 8 20 1200 8,2 8 8 480 3,4 8 20,5 1230 8,4 8 8,5 510 3,6 8 21 1260 8,6 8 9 540 3,8 8 21,5 1290 8,8 8 9,5 570 4 8 22 1320 9 8 1 2 3 4 5 6 7 8 10 600 4,2 8 22,5 1350 9,2 8 10,5 630 4,4 8 23 1380 9,4 8 11 660 4,6 8 23,5 1410 9,6 8 11,5 690 4,8 8 24 1440 9,8 8 12 720 5 8 24,5 1470 10 8 МgCl2:Na2CO3=1:1,5; рН=9,4; хмg=0 0 0 0,2 70 15 900 6,2 9 0,5 30 0,4 69 15,5 930 6,4 9 1 60 0,6 30 16 960 6,6 9 1,5 90 0,8 26 16,5 990 6,8 9 2 120 1 16 17 1020 7 9 2,5 150 1,2 15 17,5 1050 7,2 9 3 180 1,4 14 18 1080 7,4 9 3,5 210 1,6 12 18,5 1110 7,6 9 4 240 1,8 10 19 1140 7,8 9 4,5 270 2 9 19,5 1170 8 9 5 300 2,2 9 20 1200 8,2 9 5,5 330 2,4 9 20,5 1230 8,4 9 6 360 2,6 9 21 1260 8,6 9 6,5 390 2,8 9 21,5 1290 8,8 9 7 420 3 9 22 1320 9 9 7,5 450 3,2 9 22,5 1350 9,2 9 8 480 3,4 9 23 1380 9,4 9 8,5 510 3,6 9 23,5 1410 9,6 9 9 540 3,8 9 24 1440 9,8 9 9,5 570 4 9 24,5 1470 10 9 10 600 4,2 9 25 1500 10,2 9 1 2 3 4 5 6 7 8 10,5 630 4,4 9 25,5 1530 10,4 9 11 660 4,6 9 26 1560 10,6 9 11,5 690 4,8 9 26,5 1590 10,8 9 12 720 5 9 27 1620 11 9 12,5 750 5,2 9 27,5 1650 11,2 9 13 780 5,4 9 28 1680 11,4 9 13,5 810 5,6 9 28,5 1710 11,6 9 14 840 5,8 9 29 1740 11,8 9 14,5 870 6 9 29,5 1770 12 9 Данные по величине рН раствора и степени осаждения, приведенные в таблице 4.4, свидетельствуют о том, что с увеличением соотношения осадителя к щелоку увеличивается рН и постепенно снижается содержание MgCl2 в щелоке. Таким образом, при соотношении осадитель - щелок = 1:1 - ион магния (хлорид магния) отсутствует, что указывает о полном осаждении хлорида магния в виде нерастворимого осадка при любой температуре.Таблица 4.4.Данные по величине рН раствора и степени осаждения. Температура, 0С Соотношение MgCl2 : Na2CO3. рН Количество MgCl2, % Степень осаждения, % 22 1:0,4 7,810 0,512 38,9 1:0,6 7,920 0,506 39,6 1:0,8 8,519 0,425 49,3 1:1 8,670 0 100 1:1,25 9,300 0 100 1:1,5 9,610 0 100 30 1:1 8,2 0 100 1:1,25 9,1 0 100 1:1,5 9,32 0 100 40 1:1 8,9 0 100 1:1,25 9,16 0 100 1:1,5 9,4 0 100 Состав получаемого осадка проверили на содержание в нем соответствующих ионов. С этой целью воспользовались следующие методы:. Химический анализ, в соответствии, с которым навеску влажного осадка (1г) взвешивали с точностью до 0,00001г, растворяли в азотной кислоте в соотношении Т:Ж =1:1, помещали в колбу на 250 мл, доводили водой до метки и перемешивали. 10 мл приготовленного раствора пипеткой помещали в коническую колбу для титрования, прибавляли 10 мл буферного раствора, и 7-8 капель индикатора эриохром. Полученный раствор титровали трилоном Б от винно-красной окраски до сине-сиреневой и определяли объем израсходованного трилона Б. После этого отбирали пипеткой еще 10 мл этого же раствора и помещали в коническую колбу для определения ионов кальция, прибавляли 20 мл 10%-ой КОН,

6. Технологическая часть

.1 Расчет материального баланса

.2 Синтез технологической схемы с экономической оценкой предлагаемой технологии

.2 Контрольно-измерительные приборы и аппараты

7. Экономическая часть

Заключение

Библиографическое описание используемых литературных источников



Вторичные частицы являются постаревшими зародышами твердой фазы, состоящими из первичных кристаллических частиц. Увеличение концентрации твердой фазы ведет к уменьшению размера вторичных частиц, что в свою очередь еще более замедляет процесс хлопьеобразования. С уменьшением концентрации твердой фазы возрастает прочность хлопьев, состоящих из вторичных частиц Mg(OH)2. При снижении концентрации до критической прочность хлопьев резко возрастает.

С повышением температуры увеличиваются компактность вторичных частиц и скорость их коагуляции. В результате возрастает скорость образования хлопьев и скорость их осаждения.

Изучение свойств гидроксида магния показывает, что в состав осадка входит большое количество жидкой фазы, во много раз превышающее вес и объем твердого вещества, образующего хлопья взвеси. /11/

Для получения легко фильтрующего осадка необходимо создать условия для медленной кристаллизации при малом пересыщении раствора и при относительно небольшом количестве центров кристаллизации.

В последнее время в связи с внедрением бестарных способов хранения и транспортировки хлорида калия возросли требования к его физико-механическим свойствам.

Как показала практика, в настоящее время до 30-40 % от объема поставок гранулированных калийных удобрений поступает потребителю с нарушенным гранулометрическим составом и слежавшимися.

Анализ сведений о физико-механических свойствах гранулированных материалов показывает, что наиболее важными физико-механическими свойствами, характеризующими качество минеральных удобрений, являются влажность, гигроскопичность, слеживаемость, рассеваемость, статическая прочность гранул, гранулометрический состав, сыпучесть гранул.

Высокая прочность гранул и низкая слеживаемость обеспечивают сохранность гранулометрического состава и сыпучесть продукта при транспортировке и внесении удобрений.

Выполнение таких требований дает следующие преимущества:

Ø обеспечение бестарной перевозки, что снижает затраты на погрузо-разгрузочные работы;

Ø уменьшение потерь продукта при транспортировке.

Для решения этой проблемы во флотационный хлорид калия вводят добавки, которые повышают прочность гранул и уменьшают гигроскопичность продукта.

Ассортимент добавок велик. Это вещества, либо снимающие амины с поверхности кристаллов и тем самым обеспечивающие получение более прочной гранулы, либо вступающие в химическое взаимодействие, приводящее к повышению статической прочности.


В патентной литературе известны следующие способы, улучшающие физико-механические свойства гранул хлорида калия: смешение исходного материала с горячим ретуром, что приводит к образованию кристаллических мостиков /12/; в исходный расплав хлорида калия вводят соль, кристаллизующуюся по ромбической структуре, что приводит к упрочнению гранул, возможно за счет цементирующего действия /13/; получение гранулированного хлористого калия путем прессования смеси исходного хлористого калия с пластифицирующими добавками (в качестве добавки используют смесь сульфата кальция и фосфорной кислоты), при введении указанной смеси в шихту хлористого калия улучшаются пластические свойства прессуемой шихты, что приводит к увеличению плотности и прочности прессованного материала и, как следствие, к увеличению прочности готового продукта /14/; получение гранулированного хлористого калия путем введения связующего вещества в исходную массу, в котором в качестве связующей добавки используют полифосфат натрия /15/, раствор полиакриламида /16/, смесь растворов мочевины и полиэтиленгликоля. /17, 18/

Известен способ получения гранулированного хлористого калия, включающий продавливание влажной соли через решетку, введение добавки и сушку продукта. Добавку вводят во влажную соль перед продавливанием, а в качестве добавки используют аммонизированный торф или сапропель. /19/

Также известно применение органических добавок: получения гранулированного хлористого калия путем введения добавки при прессовании. В качестве связующей добавки используют концентрата сульфитно-спиртовой барды (ССБ) в сочетании с торфяной золой /20/, раствором сульфитно-дрожжевой бражки и хлористого калия. /21/ Увеличение прочности можно объяснить тем, что спирт разрушает и удаляет амины с поверхности.

В научной литературе также известны связующие добавки и описано их влияние на физико-механические свойства хлористого калия:

.Были проведены опыты по нанесению дистиллята веретенного масла на исходный мелкокристаллический хлористый калий перед прессованием. Добавку использовали в количестве 0,1-0,2 кг/т. В присутствии добавки значительно повышается влагостойкость и снижается слеживаемость полученных гранул. /22/

.Было изучено влияние различных веществ на прессуемость хлористого калия и влагостойкость его гранул. Основное внимание было уделено широкодоступным добавкам: слоп-вокс, дистиллят веретенного масла, ГФК-1 и др. Из неорганических веществ были испытаны сульфат и нитрат аммония, хлористый аммоний.



Из числа изученных органических добавок наиболее эффективными являются дистиллят веретенного масла и ГФК-1+10% аминов. Введение в хлористый калий перед прессованием сульфата или нитрата аммония заметно повышает прочность образцов и увеличивает влагостойкость полученных из них гранул. Одновременно снижается слеживаемость продукта. /23/

При выборе добавок необходимо учитывать возможные последствия их применения, стоимость добавок

В связи с вышеизложенным, целью дипломной работы являлось изыскание добавок и исследование их влияния на прочность флотационного хлористого калия.




2. Теоретический анализ исследуемого процесса



.1 Термодинамический анализ



Задачами термодинамического анализа являются:

. Определение условий протекания реакции, которые обеспечивают максимальный выход целевого продукта, в результате чего можно дать рекомендации по оптимальным параметрам исследуемого процесса.

. Установление химизма процесса.

. Определение условий подавления побочных реакций.

. Установление термических интервалов протекания реакций.

. Расчет выхода целевого продукта.

. Вывод о возможности протекания реакции и о путях увеличения выхода продукта делается на основе анализа значений энергии Гиббса и величины константы равновесия.

Процесс выделения магния из оборотного щелока флотационной фабрики описывается следующими уравнениями реакций (2.1.1.-2.1.2.):
(2.1.1.)

(2.1.2.)
Энергия Гиббса этих реакций рассчитывается по уравнению:

G0т = ∆Н0298 - Т*∆S0298;

Данные для расчета берем из справочной литературы. /24/

Термодинамические константы веществ представлены в таблице 2.1.1.

Таблица 2.1.1.

Термодинамические константы веществ.

вещество

∆Н0298, Дж/моль

S0298, Дж/(моль*градус)

ж

-607462

117,38

ж

-1111691

141,05

тв

-1097780

70,39

ж

-386473

95,19

ж

-985120

83,40

тв

-924660

63,18

ж

-795920

108,37



По ниже перечисленному алгоритму определяем условия протекания для каждой реакции, которые обеспечивают максимальный выход целевого продукта.

5. Определяем энтальпию и энтропию реакций.
DH2980=Sn*DH2980прод-Sn*DH2980исх.в-в (2.1.1.)

DS2980=Sn*DS2980прод-Sn*DS2980исх в-в (2.1.2.)
5. Согласно установленной температуре работы флотационной фабрики. Выбираем интервал температур 283-323 с шагом 20 K

5. Определяем изменение энергии Гиббса и константы равновесия в выбранном интервале температур.
G0т = ∆Н0298 - Т*∆S0298 (2.1.3.)

Кр = е -∆Gт /RT (2.1.4.)
4. Полученные данные энергии Гиббса и константы равновесия сводим в таблицу 2.1.2.

5. Строим графики зависимости энергии Гиббса от температуры и логарифма константы равновесия от температуры.

Проводим расчеты для реакции (2.1.1).



2. Выбираем интервал температур 283-323 с шагом 20 K.



. Аналогично проводим расчеты для второй реакции. Последовательность и результаты расчетов представляем в виде таблицы 2.1.2.
Таблица 2.1.2.

Результаты термодинамического анализа

Номер реакции

∆Н0298, кДж/моль

S0298, Дж/моль*г

G0298, кДж/моль

ln Кр










283К

303К

323К

283К

303К

323К

2.1.1

-151.57

2.34

-152.23

-152.28

-152.32

60,76

60.48

56.75

2.1.2

-127.99

-29.23

-119.73

-119.14

-118.56

50.91

47.32

44.17