Файл: Основы метрологии, стандартизации и сертификации кафедра промышленного, гражданского строительства и экспертизы недвижимости.pptx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 24.11.2023
Просмотров: 274
Скачиваний: 1
СОДЕРЖАНИЕ
ОСНОВЫ МЕТРОЛОГИИ, СТАНДАРТИЗАЦИИ И СЕРТИФИКАЦИИ
КАФЕДРА ПРОМЫШЛЕННОГО, ГРАЖДАНСКОГО СТРОИТЕЛЬСТВА И ЭКСПЕРТИЗЫ НЕДВИЖИМОСТИ
ПРЕПОДАВАТЕЛЬ – БУСОВА НАДЕЖДА НИКОЛАЕВНА
т.р. 375-47-92 эл.почта n.n.busova@urfu.ru
НЕОБХОДИМЫЕ ИСТОЧНИКИ ИНФОРМАЦИИ
Существует иерархия потребностей:
Классификация показателей качества
Универсальные свойства продукции
В этот перечень, как правило, входят универсальные требования к качеству любого объекта.
Для подтверждения требуемого качества испытаний лаборатории должны пройти процедуру аккредитации.
В России действует Система аккредитации испытательных, измерительных и аналитических лабораторий.
ОСНОВНЫЕ ЭЛЕМЕНТЫ СИСТЕМЫ КАЧЕСТВА
Необходимыми элементами системы управления качеством (СУК), создаваемой на предприятии являются:
На современном этапе измерения во всем мире соотносят с понятием единства измерений.
Термин «измерение» связан с физическими величинами (ФВ).
КЛАССИФИКАЦИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН
V. В зависимости от степени приближения объективности значения ФВ:
Q = q [Q] – основное уравнение измерения,
ОСНОВНЫЕ ЕДИНИЦЫ ФИЗИЧЕСКИХ ВЕЛИЧИН СИСТЕМЫ СИ (ГОСТ 8.417-2002. ГСИ. Единицы величин., табл.1)
ПРОИЗВОДНЫЕ ЕДИНИЦЫ СИ, ИМЕЮЩИЕ СПЕЦИАЛЬНЫЕ НАЗВАНИЯ (ГОСТ 8.417-2002. ГСИ. Единицы величин, табл.3)
ПРОИЗВОДНЫЕ ЕДИНИЦЫ СИ, ИМЕЮЩИЕ СПЕЦИАЛЬНЫЕ НАЗВАНИЕ (продолжение табл.3)
МЕЖДУНАРОДНАЯ СИСТЕМА ЕДИНИЦ ФИЗИЧЕСКИХ ВЕЛИЧИН
Лекция № 3. РАЗМЕРНОСТЬ И РАЗМЕР ИЗМЕРЯЕМОЙ ВЕЛИЧИНЫ
При определении размерности производных величин руководствуются следующими правилами:
dim q=Q = Lά Mβ Tγ k Il Jm N t,
Если все показатели размерности равны нулю, то такая величина называется безразмерной.
Шкалы измерений Термин «шкала» в метрологической практике имеет два различных значения:
Шкала измерений количественного свойства является шкалой ФВ.
Примеры ОКТЭСИ: ОКСО, ОКП, ОКУН, ОКПО, ОКВ, ОКС, ОКЗ, ОКИСЗН, ОКСВНК и др.
ШКАЛА БОФОРТА (шкала силы ветра)
За начало отсчета принято либо сотворение мира, либо Рождество Христово.
В приведенном примере это 1, 100 и 1000.
Примером может быть шкала коэффициентов усиления или ослабления, КПД, шкала вероятностей.
Лекция № 4. ВИДЫ И МЕТОДЫ ИЗМЕРЕНИЙ. ВИДЫ КОНТРОЛЯ
КЛАССИФИКАЦИИ ИЗВЕСТНЫХ ВИДОВ ИЗМЕРЕНИЙ
В целом точность измерения зависит от:
Стандартизация методик применяется для измерений, широко применяемых.
МВИ периодически пересматриваются с целью их усовершенствования.
Лекция № 5. СРЕДСТВА ИЗМЕРЕНИЙ
КЛАССИФИКАЦИЯ СРЕДСТВ ИЗМЕРЕНИЙ
Рис. Простая измерительная цепь
КЛАССИФИКАЦИЯ СРЕДСТВ ИЗМЕРЕНИЙ ПО КОНСТРУКТИВНОМУ ИСПОЛНЕНИЮ
Различают четыре основные группы аналоговых приборов, применяемых для разных измерительных целей.
Лекция № 7. МЕТРОЛОГИЧЕСКИЕ СВОЙСТВА СРЕДСТВ ИЗМЕРЕНИЙ
МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ СРЕДСТВ ИЗМЕРЕНИЙ
Для каждого типа СИ устанавливают свой набор метрологических характеристик.
МЕТРОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ СРЕДСТВ ИЗМЕРЕНИЙ
Точность измерений СИ – это величина обратная погрешности СИ, определяется как Т = 1/ΔСИ.
КЛАССЫ ТОЧНОСТИ СРЕДСТВ ИЗМЕРЕНИЙ
∆ = 250*0,015 = 3,75 В, а относительная погрешность измерения составит:
Понятие типа средства измерений
УТВЕРЖДЕНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ
ПОВЕРКА СРЕДСТВ ИЗМЕРЕНИЙ (продолжение)
ПР 50.2.006-94. ГСИ. Порядок проведения поверки средств измерений.
ПР 50.2.012-94. ГСИ. Порядок аттестации поверителей средств измерений.
ПР 50.2.007-94. ГСИ. Поверительные клейма.
РМГ 29-2013. ГСИ. Метрология. Основные термины и определения.
ГОСТ 8.061-80. ГСИ. Поверочные схемы. Содержание и построение.
РМГ 29—2013. ГСИ. Метрология. Основные термины и определения.
Лекция № 9. ПОГРЕШНОСТИ ИЗМЕРЕНИЙ
β = Δх /XN(*100 %), где XN – ВПИ СИ.
КЛАССИФИКАЦИЯ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЙ
НОМИНАЛЬНЫЕ ЗНАЧЕНИЯ ВЛИЯЮЩИХ ФИЗИЧЕСКИХ ВЕЛИЧИН
Выявление и исключение грубых погрешностей (промахов)
Существует ряд критериев для оценки промахов.
Данный критерий надежен при числе измерений п ≥ 20,…, 50.
Если n < 20, то можно применить критерий Романовского.
Если выполняется неравенство βр ≥ βт, то результат Хi отбрасывают.
ПРАВИЛА ОКРУГЛЕНИЯ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ
1,214 – 1,21; 1,2151 – 1,22; 1,215 - 1,22; 1,225 – 1,22
СИСТЕМАТИЧЕСКИЕ ПОГРЕШНОСТИ. СПОСОБЫ ИХ ОБНАРУЖЕНИЯ И УСТРАНЕНИЯ
Погрешность оператора (субъективная)
где m1 и m2 – значения, полученные при первом и втором взвешиваниях.
Этим методом определяется одновременно и отношение плеч:
которое используется в дальнейшем при обычном взвешивании в качестве поправочного коэффициента.
где ∆1, …, ∆5 - погрешности 1-го, …, 5-
Лекция № 8. СЛУЧАЙНЫЕ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ
Так как F (x = + ∞)=1, то - ∞∫ ∞ р(х) dx = 1,
Кривая имеет точки перегиба, соответствующие абсциссам mx ± σ.
Математическое ожидание случайной величины mx = -∞∫∞ x P(x)dx
представляет собой оценку истинного значения измеряемой величины.
Математическое ожидание случайных погрешностей равно нулю.
Дисперсия результатов наблюдений является характеристикой их
Среднее квадратическое отклонение результатов наблюдений
ЗНАЧЕНИЯ ФУНКЦИИ ЛАПЛАСА Таблица 1
ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ, СОДЕРЖАЩИХ СЛУЧАЙНЫЕ ПОГРЕШНОСТИ
При этом ∑ mi = n; Pi = mi / n.
Приближенное значение СКО в этом случае определяется по формуле
где: t – коэффициент Стьюдента (табличное значение);
σxˉ - среднее квадратическое отклонение среднего значения Х.
Значения функции Стьюдента для интервалов t=2…3,5… при числе измерений n от 2 до 20 Таблица 3
Абсолютной называют погрешность, выраженную в тех же единицах (ЕФВ), что и измеряемая величина (2,5 мкм; 0,4 В и тп).
Δх = Xизм – Xист (д).
Относительная погрешность представляет собой отношение абсолютной погрешности к истинному (действительному) значению ИВ.
β = Δх /Xист (д) (*100 %).
Приведенной погрешностью называют отношение абсолютной погрешности к нормируемому значению диапазона измерений величины Х данного средства измерений.
β = Δх /XN(*100 %), где XN – ВПИ СИ.
КЛАССИФИКАЦИЯ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЙ
- По форме численного выражения
- абсолютные
- относительные
- приведённые
- По закономерностям проявления
- методические
- инструментальные
- субъективные
- от внешних влияний
2.1. По виду влияющего источника
2.2. По характеру проявлений
2.2. По характеру проявлений
- постоянные
- переменные
- теоретические
- практические
- Разделяемые для удобства вычислений и учёта
- систематические
- случайные
- грубые погрешности (промахи)
- изменяются по линейному закону
- изменяются по сложному закону
2.3. Разделяемые для удобства выявления, уменьшения
и исключения
Изучение причин погрешностей и уменьшения размеров погрешностей – одна из главных задач практической метрологии, поэтому понятие «погрешность» - одно из центральных в метрологии.
Инструментальная погрешность – это погрешность применяемого средства измерения (или средств измерений). Если применяется стандартное СИ, прошедшее поверку, то интервал, в котором находится эта погрешность, известен с заданной вероятностью (стандартное значение).
Методическая погрешность обусловлена несовершенством применяемого метода измерения. На ее величину оказывают влияние несовершенство принятой измерительной модели объекта измерений , способ применения измерительного средства, алгоритмы, по которым вычисляют результат измерений и др. факторы, не связанные со свойствами применяемых средств измерений.
Субъективная погрешность – это погрешность оператора, связана с его недостаточной квалификацией или индивидуальными особенностями и связана с тщательностью выполнения правил измерительных операций.
В зависимости от причин и места возникновения (источника) погрешности подразделяют на группы: инструментальные, методические, субъективные.
Параметры окружающей среды, в которой проводятся измерения могут оказывать влияние как на средства измерений и применяемые методы измерений, так и на объект измерений. Погрешность средств измерений, возникающую от отклонений внешних факторов среды измерений от номинальных значений называют дополнительной и, для широко применяемых средств измерений, её значения часто указывают в стандартах на СИ. Влияние внешних факторов на методическую погрешность следует оценивать отдельно в каждом конкретном случае. Для большинства видов измерений наиболее полно изучено и поддается учету определение погрешностей при отклонении температуры окружающей среды. Погрешности внешних условий по характеру проявления являются систематическими. Под влиянием совокупности всех действующих факторов, в т.ч. и внешних, складывается суммарная погрешность измерения. Влияние каждого фактора может исследоваться отдельно, но удобно для исследования и оценки погрешностей делить суммарную погрешность на две составляющие: случайную и систематическую, принципиально отличающиеся по характеру проявления и требующие различных способов для их обнаружения, оценки и учета. Для определения суммарной погрешности при технических измерениях допускается использовать простую формулу (1) П=√П² сист+П²сл; (1)
НОМИНАЛЬНЫЕ ЗНАЧЕНИЯ ВЛИЯЮЩИХ ФИЗИЧЕСКИХ ВЕЛИЧИН
Влияющая величина | Номинальное значение величины |
Температура для всех видов измерений | 293К (20⁰С) |
Давление окружающего воздуха для измерения ионизирующих излучений, теплофизических, температурных, магнитных, электрических, давлений, параметров движения | 100 кПа (750 мм рт.ст.) |
То же для остальных видов измерений | 101,3 кПа (760 мм рт.ст.) |
Относительная влажность воздуха для измерений: линейных, угловых, массы и спектроскопии | 58 % |
То же для измерений электрического сопротивления | 55 % |
То же для измерений температуры, силы, твердости, переменного электрического тока, ионизирующих излучений, параметров движения | 65 % |
То же для остальных видов измерений | 60 % |
Плотность воздуха | 1,2 кг/м3 |
Ускорение свободного падения | 9,8 м/с2 |
Магнитная индукция (например, магнитного поля) и напряженность электростатического поля для измерений параметров движения, магнитных и электрических величин | 0 |
То же для остальных видов измерений | Соответствует характеристикам поля Земли в данном районе |
Частота питающей сети переменного тока | (50 ± 5)Гц |
- Случайная погрешность – составляющая погрешности измерения, изменяющаяся случайным образом (по знаку или значению) в серии повторных измерений одного и того же размера ФВ, проведенных с одинаковой тщательностью в одних и тех же условиях. В появлениях таких погрешностей не наблюдается закономерности, они обнаруживаются при повторных измерениях одной и той же величины в виде некоторого разброса результатов.
Случайные погрешности неизбежны, неустранимы и всегда присутствуют в результатах измерений. Описание случайных погрешностей возможно только на основе теории вероятностей и математической статистики.
В отличие от систематических случайные погрешности нельзя исключить из результатов измерений путем введения поправок. Однако их можно существенно уменьшить путем увеличения числа измерений, поскольку среднее арифметическое значение Х при этом стремится к истинному значению измеряемой величины Q.
- Систематическая погрешность – составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же ФВ. Систематическая погрешность, как правило, не изменяется при многократных измерениях и может быть почти полностью устранена путем обнаружения и устранения причины, по которой она возникла или путем введения поправки в оформляемый результат измерений. Однако, приведенные иллюстрации несколько упрощены, т.к. систематическая погрешность также содержит некоторый элемент случайности и в некоторой степени обладает свойствами случайной величины. На этом основании предложено считать систематическую погрешность специфической, она также может изменяться при многократных измерениях, когда фактор времени или нестабильность измерительной системы вносят заметные изменения в результаты. Часть систематических погрешностей, не поддающихся учету, причисляют к случайными. Искаженные неучтенными систематическими погрешностями результаты труднее поддаются математической обработке. В последние годы ведутся большие дискуссии вокруг понятия «неопределенность измерений».