Файл: Научноисследовательская работа студентки 4 курса Направления подготовки 06. 03. 01 Биология Профиль Биохимия.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.12.2023

Просмотров: 194

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

ГЛАВА 1. АНАЛИТИЧЕСКИЙ ОБЗОР

Роль гемоглобина как переносчика кислорода Гемоглобин железосодержащий дыхательный пигмент крови позвоночных и многих беспозвоночных животных, осуществляющий перенос кислорода от органов дыхания к тканям организма. В крови позвоночных и некоторых беспозвоночных гемоглобин содержится внутри эритроцитов в растворенном состоянии.Молекула гемоглобина позвоночных животных состоит из белка глобина и железосодержащей группы гема. В состав гема входят четыре протопорфириновых кольца, каждое из которых содержит атом двухвалентного железа. Молекулярный вес гемоглобина 66 00068 000. Физиологическая функция гемоглобина как переносчика кислорода основана на его способности обратимо связывать кислород в зависимости от концентрации последнего в крови. В присутствии кислорода железо гема связывает одну молекулу кислорода, при этом гемоглобин превращается в оксигемоглобин. При взаимодействии гемоглобина с окисью углерода (например, при отравлении этим газом) образуется более стабильный комплекс карбоксигемоглобин.Продуктами распада гемоглобина являются многочисленные железопорфириновые комплексы. При этом происходит полное отделение гема от белка (хромопротеида); это отделение протекает с превращением железа в трехвалентную форму. Получаемый железопротопорфирин называется гемином, а его соединения – геминодериватами (рисунок 3). Рисунок 3 Структура гема гемоглобинаМолекула гемоглобина состоит из четырех субъединиц: двух α и двух β и соответственно содержит четыре полипептидные цепочки двух сортов. Каждая α-цепочка содержит 141, а β-цепочка 146 аминокислотных остатков. Таким образом, вся молекула гемоглобина включает 574 аминокислоты. Хотя аминокислотные последовательности αи β-цепочек различны, они имеют практически одинаковые третичные пространственные структуры. Собственно говоря, приведенные выше детали структуры относятся не к гемоглобину, а к его белковой компоненте глобину. Каждая субъединица гемоглобина содержит одну небелковую (так называемую простетическую) группу гем. Гем представляет собой комплекс Fe(II) с протопорфирином. Структура гемма представлена на рисунке 2.Группировка гема представляет собой сложную копланарную циклическую систему, состоящую из центрального атома, который образует координационные связи с четырьмя остатками пиррола, соединенными метановыми мостиками (= СН -). В гемоглобине железо обычно находится в состоянии окисления (2+).Четыре субъединицы две α и две β соединяются в единую структуру таким образом, что α -субъединицы контактируют только с β -субъединицами и наоборот, как показано на рисунке 4. Рисунок 4 Схематичное изображение четвертичной структуры гемоглобина: Fe гем гемоглобинаКак видно из рисунка 4, одна молекула гемоглобина способна переносить 4 молекулы кислорода. И связывание, и освобождение кислорода сопровождается конформационными изменениями структуры α иβ -субъединиц гемоглобина и их взаимного расположения в эпимолекуле. Этот факт свидетельствует о том, что четвертичная структура белка не является абсолютно жесткой.Атом железа может образовать шесть координационных связей. Четыре связи направлены к атомам азота пиррольных колец, оставшиеся две связи перпендикулярно к плоскости порфиринового кольца по обе его стороны. Гемы расположены вблизи поверхности белковой глобулы в специальных карманах, образованных складками полипептидных цепочек глобина. Гемоглобин при нормальном функционировании может находиться в одной из трех форм: феррогемоглобин (обычно называемый дезоксигемоглобином или просто гемоглобином), оксигемоглобин и ферригемоглобин (называемый также метгемоглобином). В феррогемоглобине железо находится в закисной форме Fe(II), одна из двух связей, перпендикулярных к плоскости порфиринового кольца, направлена к атому азота гистидинового остатка, а вторая связь свободна. Кроме этого гистидинового остатка, называемого проксимальным (соседним), по другую сторону порфиринового кольца и на большем расстоянии от него находится другой гистидиновый остаток дистальный гистидин, не связанный непосредственно с атомом железа. Взаимодействие молекулярного кислорода со свободным гемом приводит к необратимому окислению атома железа гемма [Fe(II) → Fe(III); гем → гемин]. В дезоксигемоглобине глобин предохраняет железо от окисления.Обратимое присоединение кислорода (оксигенация), позволяющее гемоглобину выполнять свою основную функцию переносчика, обеспечивается возможностью образовать прочные пятую и шестую координационные связи и перенести электрон на кислород не от железа (то есть окислить Fe2+), а от имидазольного кольца проксимального гистидина.Для связывания кислорода с гемоглобином характерна кооперативность: после присоединения первой молекулы кислорода связывание последующих облегчается. В этом проявляется так называемый аллостерический эффект [15].Стоит заметить, что лазерное излучение оказывает влияние на процесс оксигенации гемоглобина. Авторы работы [16] измеряли величину насыщения артериальной крови кислородом первой фаланги пальца с помощью высокочувствительного быстродействующего пульсоксиметра. Третью фалангу пальца подвергали облучению He-Ne лазера (20 мВт).На рисунке 5 представлено изменение величины насыщения артериальной крови кислородом при воздействии лазерного излучением. Рисунок 5 Влияние лазерного излучения на насыщение артериальной крови кислородомНа кривые насыщения регистрируются изменения от дыхательных циклов: 40 секунд начало воздействия, 170 секунд окончание. Снижение насыщения гемоглобина синхронное с воздействием, демонстрирует дополнительное освобождение кислорода в результате фотодиссоциации гемоглобина. Это не может быть связано с улучшением микроциркуляции. Все происходит слишком быстро и синхронно. Таким образом, это значит, что низкоинтенсивное лазерное облучение высвобождает кислород в месте облучения. Авторы говорят о лазерно-индуцированной оксигенации тканей. Речь идет о селективном повышении локальной концентрации кислорода в тканях. Авторы объясняют этот эффект сдвигом кривой диссоциации оксигемоглобина. И обосновывают это совпадением спектра поглощения гемоглобина и оксигемоглобина с длиной волны He-Ne лазера. То есть, по мнению авторов, оксигемоглобин является акцептором фотона.Большой интерес для исследователей представляют особенности поведения молекул газов (лигандов) в гемовом кармане гемоглобина и миоглобина. В работе [16] рассмотрены механизмы диффузии лигандов в миоглобине, строение которого очень сходно со строением β-субъединицы молекулы гемоглобина.Результат расчетов Д. Кейза и М. Карплюса в 1979 году оказался по тем временам несколько неожиданным. Выяснилось, что скорость диффузии лиганда в белке чрезвычайно чувствительна к виду межатомных потенциалов взаимодействия, определяющих конформационную подвижность. Конформационная подвижность обусловлена возможностью вращения молекулярных групп вокруг одинарных С-С-связей [17]. В вакууме при повороте на полный угол преодолеваются обычно три потенциальных барьера высотой 2-4 ккал/моль. В плотноупакованной белковой глобуле эти вращения сильно заторможены из-за стерических препятствий, и, казалось бы, ими можно пренебречь и рассматривать только небольшие колебания атомов около локальных положений равновесия. Расчет динамики связывания лиганда с миоглобином показал, что в этом случае энергия активации диффузии составляет 100т ккал/моль, что примерно в 10 раз больше экспериментальной величины, и процесс при комнатных температурах практически заморожен. Этот результат полностью опроверг представление о белковой глобуле как об апериодическом микрокристаллике. Оказалось, что включение в расчет конформационных степеней свободы совершенно принципиально для белков и снижает энергию активации диффузии лиганда до приемлемого значения

Уравнения кривой оксигенации гемоглобина

Определение параметров взаимодействия гемоглобина с протонами водорода (эффект Бора)

Определение начальных условий для распределения кислорода в гемоглобине

ГЛАВА 2 МЕХАНИЗМЫ РЕГУЛЯЦИИ СВЯЗЫВАНИЯ ГЕМОГЛОБИНА С КИСЛОРОДОМ

2.1. Модельные представления, используемые для описания взаимодействия гемоглобина с кислородом

2.2. Свободная энергия системы гемоглобин – лиганды

2.3. Описание неравновесных процессов взаимодействия гемоглобина с кислородом

2.4. Эффективность связывания кислорода с гемоглобином

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

надышавшийся угарным газом, задыхается, несмотря на то, что во вдыхаемом им воздухе достаточно много кислорода. Нужно срочно избавить организм от СО – вынести отравленного человека на свежий воздух, интенсивное дыхание выводит угарный газ из кровотока. Сходный эффект вызывает другая молекула – анион цианистой кислоты (CN‾). Самая знаменитая соль этой кислоты – цианистый калий. Механизм отравления цианистым калием тот же, что и угарным газом, – блокирование связи гемоглобина с кислородом.

2.1. Модельные представления, используемые для описания взаимодействия гемоглобина с кислородом


Известно, что одна молекула гемоглобина состоит из четырех мономеров, мономер имеет тем область присоединения лиганда (молекул кислорода, углекислого газа и др.) и глобин белковую часть, взаимодействующую с протонами водорода [1]. Чем может находиться в нескольких состояниях, а именно: к гему присоединен кислород; к тему присоединен углекислый газ либо он может быть свободен. Каждый гем может обратимо присоединить одну молекулу кислорода. Соответственно молекула гемоглобина может присоединить 4 молекулы кислорода.

На рисунке 12 показаны типы взаимодействий, учитываемые в модели,

где Fe ион железа, L лиганд (молекула кислорода или углекислого газа), Н протон водорода. Стрелками указаны взаимодействия, учитываемые в модели. 1 -взаимодействие лигандов с гемом, 2 кооперативное взаимодействие молекул кислорода между собой, 3 взаимодействие протонов водорода с глобином, 4 конформационное взаимодействии макромолекулы гемоглобина с протонами водорода.



Рисунок 12 – Схематичное изображение предложенной макромолекулы гемоглобина. Цифрами обозначены учитываемые взаимодействия.

Для описания модели воспользуемся базовой моделью дефектообразования в конденсированных средах, описанной в работах С. В. Булярского [2]. Данная модель вполне подходит для описания процесса взаимодействия гемоглобина с кислородом.

В соответствии с вышесказанным примем следующую модель взаимодействия гемоглобина с кислородом.

В соответствии с вышесказанным примем следующую модель взаимодействия гемоглобина с кислородом. Обозначим все возможные состояния макромолекулы гемоглобина следующей системой индексов:

{i, j, k, } (4)

Численное значение индекса i соответствует количеству присоединенных молекул кислорода, j количеству молекул углекислого газа, индекс к количеству молекул присоединение еще одного лиганда.

индексы зарядового состояния связи (донорной и акцепторной), способной принимать и отдавать водород, для аминокислоты.

2.2. Свободная энергия системы гемоглобин – лиганды


Одна из важнейших функций белков состоит в специфическом катализе химических реакций. Лигандом в этом случае служит молекула субстрата, связывание которой ферментом необходимая предпосылка химической реакции.

Ферменты способны очень сильно ускорять химические реакции значительно сильнее, чем любые искусственные катализаторы. Столь высокую эффективность можно приписать нескольким факторам. Во-первых, ферменты увеличивают локальную концентрацию молекул субстрата в каталитическом центре и удерживают соответствующие атомы в ориентации, необходимой для последующей реакции.

Но наиболее важное значение имеет тот факт, что часть энергии связывания непосредственно используется для катализа. Дело в том. что молекулы субстрата, перед тем как превратиться в продукты реакции, проходят через ряд промежуточных форм с измененной геометрией и измененным электронным распределением.

Свободная энергия всех этих промежуточных форм и особенно наименее стабильных переходных состояний существенно снижена, если молекула связана с поверхностью фермента. Обычно ферменты имеют значительно большее сродство к нестабильным переходным состояниям субстратов, чем к их стабильным формам. Используя энергию связывания, ферменты помогают субстратам принять определенное переходное состояние и таким образом значительно ускоряют одну определенную реакцию.

Свободная энергия связывания составляет —7,1 ккал/ моль, что соответствует константе сродства 10 л/моль. Присоединение лиганда перетаскивает белок К из обычной неактивной формы К в каталитически активную форму К.

И. Линейная молекула имеет очень большое число идентичных центров связывания лиганда X. Свободная энергия взаимодействия между лигандами, связанными с расположенными по соседству друг с другом центрами, равна е.

АО принимает участие в связывании с одной определенной комбинацией орбит свободных электронных пар лигандов, что приводит к накоплению примерно 0,5 единицы электронного заряда на N1 и к сравнительно небольшой энергетической стабилизации, так как обычные энергии связей бывают, по-видимому, порядка 30 ккал. Обе эти величины малы вследствие относительно большого различия в энергии между 4 и электронами свободных пар у лигандов,


Конечно, прямой доступ к иону железа для лигандов закрыт аминокислотами, особенно дистальным гистидином. Как уже отмечалось, один из атомов азота имидазольного кольца гистидина обращен к железу, а другой фактически находится на поверхности, так что этот гетероцикл может работать как своего рода люк, перекрывающий лигандную полость.

Поэтому связывание любого лиганда представляет собой сложный процесс, включающий промежуточные изменения конформации белка, например поворот гистидина Е7 вокруг его связи Са —Сз или небольшое искажение структуры спирали Е [161]. Тем не менее скорость связывания кислорода исключительно велика. Константа скорости реакции второго порядка при 20°С для различных миоглобинов находится в интервале 1,0-10 — 1,9-10 дм -моль с [определенные к настоящему времени значения свободной энергии активации для этих процессов составили в трех случаях 23,0, 23,0 и 29,3 кДж/моль (5,5, 5,5 и 7,0 ккал/моль) соответственно], а константы скорости для изолированных, но слегка модифицированных аи 3-цепей составили 5-10 — 8-10 дм моль с , тогда как для мономерного гемоглобина hironomus получено более высокое значение 3-10 дм -моль 1-с [6]. Для гемоглобинов кинетика реакции имеет сложный характер вследствие изменений четвертичной структуры, однако константы скорости и в этом случае попадают в интервал 10 — 10 дм моль с . Константы скорости отщепления кислорода составляют 10—70 с , а соответствующие энергии активации равны 80—88 кДж/моль (19—21 ккал/моль) для миоглобинов и 10— 15 с и 67—105 кДж/моль (16—25 ккал/моль) для большинства гемоглобинов (эти значения сильно зависят от pH). Библиографию по этому вопросу см. в работе [8].

Даже если гистидин существенно уменьшает величину константы скорости, которая была в отсутствие белка, наблюдаемые скорости вполне достаточны для физиологических потребностей. Мутантные гемоглобины, в которых гистидин замещен на аргинин или тирозин, обнаруживают несколько более высокие скорости, особенно в реакциях с СО [8]. Некоторые гемоглобины с очень малыми константами скорости диссоциации ( 10 с 1), которые явно не могут функционировать как переносчики кислорода, встречаются у нематод

Вывод, что вода может вступать в реакцию через 4 /-орбиту, в то время как анионы не могут сделать этого, можно
понять на основании теории Крейга о сжатии, вызываемом во внешних -орбитах электроно-притягивающими (электроотрицательными) лигандами [19]. Анионы отталкивают электроны (электроположительны), хотя в связанном виде они становятся менее электроположительными. Внешние й -орбиты не пригодны для связывания таких лигандов из-за своей большой протяженности и низкой амплитуды, вследствие чего, несмотря на полное перекрывание, интеграл перекрывания с относительно маленькими и подразделенными орбитами лигандов очень мал. Однако молекула воды, почти нейтральная в свободном состоянии, становится заряженной положительно и потому электронопритягивающей (электроотрицательной), когда она связана. Такой лиганд в состоянии оттянуть обычно диффузную с/-орбиту и сконцентрировать ее против себя, в результате чего возникает значительный интеграл перекрывания, а значит, и существенная энергия связи.

По относительной силе связывания атомом цинка в ферменте галогенид-ионы можно расположить в ряд 1-->ВгС1"р-, что обратно ряду по силе связывания свободного иона 2п +. Эту противоположную направленность можно интерпретировать как своего рода смягчающее влияние белка на ион цинка в противоположность сильному лиганду СН-, для которого энергия связи одинакова как со свободным так и в ферменте

 При взаимодействии лиганда X с новой орбиталью (с энергией Нм) эффект связывания Дг будет меньше, чем при взаимодействии со свободным атомом металла  

В отсутствие лигандов сверхспирализованные молекулы обладают большей свободной энергией, чем открытые формы двойной спирали. Доказательством тому служит тот факт, что при образовании разрыва в одиночной цепи сверхспирализация спонтанно исчезает, при этом молекула переходит в релаксированное состояние. Ббльшая величина свободной энергии в этом случае является результатом уменьшения энтропии при переходе ДНК в более компактную и более упорядоченную сверхспирализованную форму, а также увеличения энтальпии из-за появления напряжений и деформаций в структуре молекулы. Так как при < = О нативная сверхспиральная молекула находится на более высоком энергетическом уровне, чем эквивалентная ей во всем остальном открытая форма ДНК, то отсюда с необходимостью следует, что при V < свободная энергия связывания всякого лиганда, способного уменьшать число сверхвитков, должна быть меньше для сверхспира