ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 26.09.2020
Просмотров: 2945
Скачиваний: 35
СОДЕРЖАНИЕ
Топография с основами геодезии
6.1. Непосредственное измерение расстояний
По теореме синусов определяют расстояние L.
Расхождение между L1 и L2 допускается в пределах 1/1000 ÷ 1/3000 от средней длины L.
6.3. Измерение расстояний оптическими дальномерами
Математическая обработка включает два вида работ: вычислительную и графическую (построение профиля).
Топографо-геодезические работы выполняются по принципу от общего к частному. Это означает, что первоначально определяют координаты небольшого числа точек с высокой точностью, а затем на их основе определяют координаты других точек.
Геодезическая основа (сеть опорных пунктов) представляет совокупность точек, прочно закрепленных на земной поверхности, положение которых определено в общей для них системе координат и высот. В результате построения геодезических сетей определяют плоские прямоугольные координаты пунктов Х, Y и их высоты Н, которые в совокупности позволяют определить положение пункта в единой системе координат.
7.1. Виды геодезических опорных сетей
Геодезические сети подразделяются на государственные, геодезические сети сгущения и съемочные.
Наиболее общей и точной является государственная геодезическая сеть (ГГС). Она представляет основу (каркас) для построения других геодезических сетей.
Геодезическая опорная сеть подразделяется на плановую и высотную, а если для пунктов определены плановые и высотные координаты, то она является планово-высотной.
Определение планового положения пунктов, т. е. создание плановой геодезической сети, выполняется методами триангуляции, трилатерации, полигонометрии и спутниковой технологии.
Метод триангуляции представляет собой определение плановых координат пунктов на основе измерения всех углов и отдельных сторон в примыкающих друг к другу треугольниках (см. 2.2).
Метод трилатерации (от лат. trilaterus – трехсторонний) заключается в вычислении координат опорных пунктов из измерений длин линий сторон сети треугольников.
Метод полигонометрии (от греч. poligonos – многоугольный и metreo – измеряю) состоит в определении координат пунктов посредством измерения углов и длин сторон в полигонометрических ходах, прокладываемых обычно между пунктами триангуляции.
Плановая государственная геодезическая сеть Беларуси представляет собой часть геодезической сети бывшего СССР и создана главным образом методом триангуляции. В зависимости от точности измерения углов и расстояний, а также порядка последовательности ее развития она подразделяется на сети 1, 2, 3, 4 классов. Плановая ГГС 1 и 2 классов служит для научных исследований, связанных с определением фигуры и размеров Земли как планеты, а также для создания единой системы координат на всю территорию страны. Сеть 1 класса строится в виде системы полигонов. Полигоны состоят из звеньев-цепочек треугольников с длиной стороны не менее 20 км и протяженностью до 200 км, которые располагаются вдоль меридианов и параллелей. Сеть треугольников 1 класса внутри заполняют (сгущают) сетью треугольников 2 класса, которые в свою очередь заполняются сетью 3 и 4 классов.
По состоянию на конец 1980-х гг. плановая ГГС Республики Беларусь включала 6793 пункта, в том числе пунктов триангуляции 1, 2 классов – 2509 и 3, 4 классов – 4284, а средняя плотность составляла 1 пункт на 30,3 км2.
В последнее время геодезическая служба Республики Беларусь осуществляет переход на автономные методы координатных определений путем внедрения спутниковых систем позиционирования, т. е. определяется местоположение (координаты) объектов при помощи ИСЗ. В настоящее время действуют две глобальные системы позиционирования: в США – Global Positioning System (GPS) и в России – глобальная навигационная спутниковая система (ГЛОНАСС).
На современном этапе развития ГГС создана высокоточная спутниковая геодезическая сеть. Ее основу составляет единая фундаментальная астрономо-геодезическая сеть (ФАГС) России и Беларуси. Составной частью данной совместной сети является пункт ФАГС «Минск», который благодаря установленной на нем совмещенной GPS/ГЛОНАСС системе действует в режиме постоянной спутниковой станции. Высокоточная спутниковая геодезическая сеть включает 10 пунктов равномерно расположенных на территории республики через 150–200 км и определенных с точностью взаимного положения 1,5–2,0 см.
Дальнейшее развитие ГГС предусматривает сгущение спутниковой геодезической сети 1 класса с расстояниями между пунктами 25–30 км и сантиметровой точностью определения взаимного положения.
Высотную государственную геодезическую сеть создают методом геометрического нивелирования. В зависимости от точности определения высот пунктов, государственную нивелирную сеть подразделяют на I, II, III и IV классы. Нивелирная сеть I и II классов является главной высотной основой. Развитые на обширных территориях нескольких стран такие сети служат для решения важных научных задач (изучения современных вертикальных движений земной коры, определения разностей высот морей и океанов и др.). Линии нивелирования I и II классов прокладывают вдоль побережий морей и океанов, а также по шоссейным и железным дорогам, вдоль крупных рек. Нивелирная сеть I класса строится в виде полигонов с периметром 3000–4000 км, связанных между собой. Сети II, III, IV классов прокладывают внутри полигонов I класса. Высотная ГГС является основой для создания высотного обоснования топографических съемок всех масштабов.
По состоянию на конец 1980-х гг. протяженность линий нивелирования высотной ГГС на территории Республики Беларусь составляла около 15 000 км, в том числе I, II классов – 4500. Общее число нивелирных знаков, закрепляющих на местности высотные ГГС превышало 40 000.
Исходными пунктами плановой и высотной ГГС более низких классов служат пункты высших классов точности. Так, например, исходными пунктами для развития сетей второго класса являются пункты первого класса, т. е. ГГС от первого к последующим классам точности создается методом сгущения.
Пункты ГГС закрепляются на местности специальными постоянными центрами, которые закладываются в земле (верх центра – марка находится ниже уровня земной поверхности) или в фундаментах и стенах капитальных зданий (сооружений). Опорные пункты плановой ГГС обозначены наземными сооружениями в виде пирамид и сигналов, устанавливаемых над центрами знаков.
Пункты высотной ГГС закрепляют на местности постоянными знаками – реперами, которые бывают трех видов: фундаментальные, грунтовые и стенные, в т. ч. марки и реперы.
Плановую государственную геодезическую сеть сгущают путем построения на местности геодезической сети сгущения (ГСС) и съемочной геодезической сети. Плановую геодезическую сеть сгущения (местную геодезическую сеть) создают способом триангуляции 1 и 2 разрядов и способом полигонометрических ходов 1 и 2 разрядов. Съемочную геодезическую сеть строят способом микротриангуляции, различных засечек и проложением теодолитных ходов.
Высотная геодезическая сеть сгущения строится путем проложения ходов геометрического и тригонометрического нивелирования по пунктам съемочного обоснования (ГСС и съемочных сетей).
Общую плотность геодезических сетей устанавливают в зависимости от масштаба топографической съемки и условий местности.
7.2. Плановая съемочная геодезическая сеть
Плотность пунктов ГГС и сетей сгущения является недостаточной для производства крупномасштабных топографических съемок и поэтому на их основе создаются геодезические съемочные сети (съемочное обоснование). Основным методом построения съемочных сетей являются теодолитные ходы, в которых измеряются углы и длины сторон.
Теодолитные ходы прокладываются между твердыми пунктами, т. е. исходными геодезическими пунктами с известными плановыми координатами. Они бывают замкнутыми и разомкнутыми. Замкнутый ход представляет собой многоугольник, опирающийся на один исходный пункт (рис. 7.1 а), разомкнутый ход опирается на два исходных пункта (рис. 7.1 б).
а |
б |
Рис 7.1
Полевые работы при проложении теодолитного хода включают:
1. Рекогносцировку местности, т. е. ее осмотр и выбор положения точек (вершин) теодолитного хода. Точки хода должны быть расположены так, чтобы с каждой точки была видимость на предыдущую и последующую вершины хода, а также достаточный обзор местности для проведения съемки.
2. Закрепление точек хода. Вершины закрепляют постоянными (металлические трубы, бетонные пилоны) или временными (деревянные столбы и колья) геодезическими центрами.
3. Подготовка сторон хода для измерений. Включает очистку створа от кустарника и провешивание линий.
4. Измерение углов и сторон. Горизонтальные углы измеряют теодолитами способом приемов или круговых приемов, в зависимости от количества направлений. В замкнутых ходах измеряют внутренние углы, а в разомкнутых – левые или правые, лежащие по ходу углы. Особое внимание уделяется центрированию теодолита и визированию на низ вешек. При углах наклона более 1,5º их измеряют с целью введения поправок за наклон в длины линий. Длины сторон хода измеряют мерными лентами в прямом и обратном направлениях с относительной ошибкой или малыми светодальномерами (СМ–2, СМ–5). Результаты всех измерений вносятся в журнал карандашом без исправлений.
На участок площадью до 1 км2 при отсутствии данных о ГГС и сетях сгущения съемочные сети могут создаваться как самостоятельные геодезические сети в своей условной системе координат и высот.
7.3. Математическая обработка теодолитного хода
Математическая обработка состоит из: увязки (уравнивания) измеренных углов; вычисления дирекционных углов (азимутов) и румбов; вычисления горизонтальных проложений линий; определения приращений координат и их уравнивания и вычисления координат пунктов теодолитного хода.
Рассмотрим математическую обработку измерений на примере замкнутого теодолитного хода.
Результаты полевых измерений и вычислений записывают в ведомость вычисления координат (табл. 7.1).
1) Выполняется оценка качества результатов измерения углов, которая состоит из:
– вычисления суммы измеренных углов ( );
– определения теоретической суммы углов по формуле .= = 180˚(n – 2), где n – число углов в ходе;
– вычисления фактической угловой невязки по формуле ;
– определения величины допустимой угловой невязки согласно формуле fβ доп. = 0,8√n (для учебных целей допускается –1,5√n), где n – число углов.
Вычисленная угловая невязка не должна быть больше допустимой.
Фактическая невязка распределяется с обратным знаком в виде поправок в измеренные значения углов. Бо́льшие поправки необходимо вводить в углы с короткими сторонами. Сумма поправок должна равняться невязке с обратным знаком. Исправленные значения углов получают прибавлением поправок к измеренным углам. Контролем уравнивания служит получение теоретической суммы углов хода.
2) Вычисление дирекционных углов и румбов сторон теодолитного хода. Исходный дирекционный угол 1-2 , получают в результате привязки стороны хода 1–2 к пунктам опорной геодезической сети или определяют для этой стороны хода магнитный азимут. По известному дирекционному углу1-2 и по исправленным углам β вычисляют дирекционные углы всех сторон хода. Если измерены правые по ходу углы, то вычисления выполняются по формуле , т. е. дирекционный угол последующего направления n равен дирекционному углу предыдущего направления n-1 плюс 180˚ и минус исправленный правый по ходу угол между этими направлениями β(п-1)-п. Контролем вычислений дирекционных углов является получение исходного дирекционного угла. По дирекционным углам вычисляют румбы, пользуясь их зависимостью между собой (см. табл. 2.4).
3) Вычисление горизонтальных проложений производится для линий, имеющих наклон более 1,5˚ по формуле v.
4) Вычисление приращений координат и их уравнивание. Приращения координат Δх и Δу находят по известным формулам прямой геодезической задачи: ; , где S – горизонтальное проложение линии, – дирекционный угол.
В замкнутом полигоне алгебраические суммы приращений координат должны равняться нулю: . Но вследствии погрешностей S и эти суммы отличаются от нуля, образуя линейные невязки приращений координат fх и fу , т. е. fх =Δх; fу =Δу.
Абсолютную линейную невязку вычисляют по формуле
.
Абсолютная невязка характеризует точность выполненных полевых работ, ее величина не должна превышать допустимую fабс.≤ fабс доп = 0,6мм М, где М – знаменатель масштаба съемки.
Для определения допустимости абсолютной невязки и оценки точности выполненных полевых работ вычисляют также относительную невязку, т.е. отношение абсолютной невязки fабс. к периметру полигона (хода) ∑S. .
Допустимость невязки определяется заданной точностью и условиями местности и изменяется от 1/1000 – при неблагоприятных условиях измерений; 1/2000 – при средних условиях и 1/3000 – при благоприятных условиях измерений.