Файл: Урок алгебры в 11 классе по теме Предел функции в точке. Производная функции в точке. Геометрический и физический смысл производной..doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 25.10.2023

Просмотров: 109

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Урок алгебры в 11 классе по теме «Предел функции в точке. Производная функции в точке. Геометрический и физический смысл производной.»

Цель урока:

  • Формирование у учащихся наглядно – интуитивных представлений о пределе функции в точке.

  • Развитие внимания, памяти, логического мышления;

  • Воспитание старательности, организованности.

Ход урока.

1. Организационный момент.

- Здравствуйте, ребята. Тема нашего урока: «Предел функции в точке». Сегодня на уроке мы познакомимся с понятиями «предел функции в точке», «непрерывность функции», а также рассмотрим правила вычисления предела функции в точке.

2. Мотивация изучения темы.

- Эта тема очень важна для дальнейшего изучения алгебры: понятие предела функции имеет большое значение для построения графиков функций. Кроме того, в дальнейшем мы будем изучать понятие производной и без знания предела функции рассмотрение этого понятия невозможно.

3. Актуализация опорных знаний.

- Перед тем как начать изучать новую тему выполним следующее задание: постройте график функции если:

а) при х = 4 значение функции не существует; (рис.1)

б) при х = 4 значение функции равно 3; (рис.2)

в) при х = 4 значение функции равно 2. (рис.3)

(В ходе выполнения этого упражнения учащиеся повторяют нахождение области определения функции, а также построение графика функции, которая при данном значении аргумента либо имеет значение, либо не определена).



Рисунок 1



Рисунок 1



Рисунок 2

4. Изучение нового материала.

1. Предел функции в точке.

- Воспользуемся построенными графиками функций. Во всех трех случаях изображена одна и та же кривая, тем не менее, это три разные функции.

- Чем они отличаются друг от друга?

(Они отличаются друг от друга своим поведением в точке х = 4).


- Как ведет себя функция в точке х = 4 на первом графике?

(Для функции при х = 4 значение функции не существует, функция в указанной точке не определена).

- Как ведет себя функция в точке х = 4 на втором графике?

(Для функции при х = 4 значение функции существует, но оно отличается от естественного значения функции в указанной точке).

- Как ведет себя функция в точке х = 4 на третьем графике?

(Для функции при х = 4 значение функции существует, и оно равно естественному значению функции в указанной точке, то есть двум).

- Если мы исключим точку х = 4 из рассмотрения, то все три функции будут тождественными.

- Для всех трех случаев используется одна и та же запись: .

- В общем случае эта запись выглядит следующим образом: .

- Эту запись читаем так: «предел функции y=f(x) при стремлении х к а равен b».

- А теперь ответьте на такой вопрос: какую из трех рассмотренных функций естественно считать непрерывной в точке х = 4?

(Непрерывной будет третья функция)

- Так как эта функция непрерывна, то она удовлетворяет условию . И функцию f (x) называют непрерывной в точке х = а.

- Иными словами, функцию y = f (x) называют непрерывной в точке х = а, если предел функции y = f (x) при стремлении х к а равен значению функции в точке х = а.

- Функция y = f (x) называется непрерывной на промежутке Х, если она непрерывна в каждой точке промежутка.

- При изучении различных функций (линейной, квадратичной, степенной, иррациональной, тригонометрических) мы отмечали, что они являются непрерывными либо на всей числовой прямой, либо на промежутке. Исходя из этого, можно сформулировать следующее утверждение: если выражение f (x) составлено из рациональных, иррациональных, тригонометрических выражений, то функция y

= f (x) непрерывна в любой точке, в которой определено выражение f (x).

Решение задач на закрепление понятия предела.

- Для закрепления понятия предела функции в точке рассмотрим несколько примеров на вычисление пределов функций.

Пример 1. Вычислить: .

Решение. Выражение х3 – 2х2 + 5х + 3 определено в любой точке х, в частности, в точке х = 1. Следовательно, функция у = х3 – 2х2 + 5х + 3 непрерывна в точке х = 1, а потому предел функции при стремлении х к 1 равен значению функции в точке х = 1.

Имеем: .

Ответ: 7.

- Для решения следующего примера нам потребуются правила вычисления предела функции в точке.

Правило 1. .

Правило 2. .

Правило 3. .

Пример 2. Используя эти правила, вычислим .

Решение. Выражение определено в любой точке х 0, в частности, в точке х = 2. Следовательно, функция у = f (x) непрерывна в точке х = 2, а потому предел функции при стремлении х к 2 равен значению функции в точке х = 2. Имеем: .

Ответ: 0.

Вычислите: а) ;

б) ;

в) ;

г) .

Решение.

а) . Выражение х2 – 3х + 5 определено в любой точке х, в частности, в точке
х = 1. Следовательно, функция у = х2 – 3х + 5 непрерывна в точке х = 1, а потому предел функции при стремлении х к 1 равен значению функции в точке х = 1.

Имеем: .

Ответ: 3.

б) . Выражение определено в любой точке х , в частности, в точке х = . Следовательно, функция у = f (x) непрерывна в точке х = , а потому предел функции при стремлении х к равен значению функции в точке х = . Имеем: .

Ответ: 0.

в) . Выражение х2 + 6х – 8 определено в любой точке х, в частности, в точке х = - 1. Следовательно, функция у = х2 + 6х – 8 непрерывна в точке х = - 1, а потому предел функции при стремлении х к - 1 равен значению функции в точке х = - 1.

Имеем: .

Ответ: - 1.

г) . Выражение определено в любой точке х , в частности, в точке х = . Следовательно, функция у = f (x) непрерывна в точке х = , а потому предел функции при стремлении х к
равен значению функции в точке х = .

Имеем: .

- Вы заметили, что в рассмотренных примерах вычисление пределов не составило значительных сложностей: достаточно было найти значение функции в точке, к которой стремится аргумент х. Но часты случаи, когда этот прием не срабатывает.

Пример 3. Вычислить .

Решение. Если подставить значение х = - 3 в заданное выражение, то и в числителе, и в знаменателе получится 0, а на нуль делить нельзя. Но заданную алгебраическую дробь можно сократить: .

Значит, функции и тождественны при условии х - 3. Но при вычислении предела функции при х - 3 саму точку х = - 3 можно исключить из рассмотрения. Значит, .

Ответ: - 1,5.

Зарядка для глаз.

2. Задачи, приводящие к понятию производной.

Задача о скорости движения.

Рассмотрим прямолинейное движение некоторого тела. Закон движения задан формулой S = S(t), т.е. каждому моменту времени t соответствует определённое значение пройденного пути S. Найти скорость движения тела в момент времени t.

Р ешение: Пусть в момент времени t тело находится в точке М.

Дадим аргументу t приращение Δt, за это время тело переместится в некоторую точку Р, т.е. пройдёт путь ΔS.

Итак, за время Δt тело прошло путь ΔS.

Что можно найти, зная эти два значения?

, т.е. среднюю скорость движения тела за промежуток времени .

Определение: Средней скоростью движения тела называется отношение пройденного пути ко времени, в течение которого этот путь пройден.