Файл: Наследственность и изменчивость фундаментальные свойства живого, их.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 25.10.2023
Просмотров: 607
Скачиваний: 2
СОДЕРЖАНИЕ
Взаимодействие аллельных генов (доминирование, неполное доминирование, кодоминирование).
Процессинг, сплайсинг. Роль РНК в процессе реализации наследственной информации.
Геном, кариотип как видовые характеристики. Характеристика кариотипа человекавнорме.
Модификации и их характеристики. Норма реакции признака. Фенокопии. Адаптивныйхарактермодификаций.
Медико-генетическиеаспектыбрака.Медико-генетическоеконсультирование.
Онтогенез как процесс реализации наследственной информации в определенных условияхсреды.
Особенности эмбрионального развития человека. Периодизация эмбриогенеза человека.
Развитиезародыша,эмбрионаиплода.
Взаимодействие частей развивающегося организма. Эмбриональная индукция. ОпытШпемана.
Критическиепериодывонтогенезечеловека.
Характеристикадорепродуктивногопериода.
Старениеистарость –причинаиследствие.
Регенерация.Физиологическаярегенерация,еёзначение.
Генетические, клеточные и системные основы гомеостатических реакций организма.
Клиническаяибиологическаясмерть.Реанимация.
Биологические ритмы. Хронобиология, хрономедицина, хроногигиена, хронофармакология,десинхронозы.
Биологическаяэволюция.Современныетеорииэволюции.
Другим примером может служить изменение схемы сплайсинга первичного транскрипта, кодирующего структуру молекул антител в лимфоцитах. Мембранная форма антител имеет на С-конце длинный «хвост» аминокислот, который обеспечивает фиксацию белка на мембране. У секретируемой формы антител такого хвоста нет, что объясняется удалением в ходе сплайсинга из первичного транскрипта кодирующих этот участок нуклеотидов.
У вирусов и бактерий описана ситуация, когда один ген может одновременно являться частью другого гена или некоторая нуклеотидная последовательность ДНК может быть составной частью двух разных перекрывающихся генов. Например, на физической карте генома фага ФХ174 (рис. 3.44) видно, что последовательность гена В располагается внутри гена А, а ген Е является частью последовательности гена D. Этой особенностью организации генома фага удалось объяснить существующее несоответствие между относительно небольшим его размером (он состоит из 5386 нуклеотидов) и числом аминокислотных остатков во всех синтезируемых белках, которое превышает теоретически допустимое при данной емкости генома. Возможность сборки разных пептидных цепей на мРНК, синтезированной с перекрывающихся генов (А и В или Е и D), обеспечивается наличием внутри этой мРНК участков связывания с рибосомами. Это позволяет начать трансляцию другого пептида с новой точки отсчета.
Нуклеотидная последовательность гена В является одновременно частью гена А, а ген Е составляет часть гена D
В геноме фага λ были также обнаружены перекрывающиеся гены, транслируемые как со сдвигом рамки, так и в той же рамке считывания. Предполагается также возможность транскрибирования двух разных мРНК с обеих комплементарных цепей одного участка ДНК. Это требует наличия промоторных областей, .определяющих движение РНК-
полимеразы в разных направлениях вдоль молекулы ДНК.
Описанные ситуации, свидетельствующие о допустимости считывания разной информации с одной и той же последовательности ДНК, позволяют предположить, что
перекрывающиеся гены представляют собой довольно распространенный элемент организации генома вирусов и, возможно, прокариот. У эукариот прерывистость генов также обеспечивает возможность синтеза разнообразных пептидов на основе одной и той же последовательности ДНК.
Имея в виду все сказанное, необходимо внести поправку в определение гена. Очевидно, нельзя больше говорить о гене как о непрерывной последовательности ДНК, однозначно кодирующей определенный белок. По-видимому, в настоящее время наиболее приемлемой все же следует считать формулу «Один ген — один поли-пептид», хотя некоторые авторы предлагают ее переиначить: «Один полипептид — один ген». Во всяком случае, под термином ген надо понимать функциональную единицу наследственного материала, по химической природе являющуюся полинуклеотидом и определяющую возможность синтеза полипептидной цепи, тРНК или рРНК.
Один ген один фермент.
В 1940 г Дж. Бидл и Эдвард Татум использовали новый подход для изучения того, как гены обеспечивают метаболизм у более удобного объекта исследований – у микроскопического грибка Neurospora crassa.. Ими были получены мутации, у которых; отсутствовала активность того-или иного фермента метаболизма. А это приводило к тому, что мутантный гриб бьл не способен сам синтезировать определенный метаболит (например, аминокислоту лейцин) и мог жить только тогда, когда лейцин был добавлен в питательную среду. Сформулированная Дж. Бидлом и Э. Татумом теория "один ген - один фермент" - быстро получила широкое признание у генетиков, а сами они были награждены Нобелевской Премией.
Методы. селекции так называемых "биохимических мутаций", приводящих к нарушениям
действия ферментов, обеспечивающих разные пути метаболизма, оказались очень плодотворными не только для науки, но и для практики. Сначала они привели к возникновению генетики и селекции промышленных микроорганизмов, а потом и к микробиологической промышленности, которая использует штаммы микроорганизмов, сверх продуцирующие такие стратегически важные вещества, как антибиотики, витамины, аминокислоты и др.. В основе принципов селекции и генной инженерии штаммов сверхпродуцентов лежит представление, что "один ген кодирует один фермент". И хотя это представление отлично практике приносит многомиллионные прибыли и спасает миллионы жизней (антибиотики) - оно не является окончательным. Один ген - это не только один фермент
- 1 2 3 4 5 6 7 8 9 ... 33
Ген как единица изменчивости. Генные мутации и их классификация. Причины имеханизмывозникновениягенныхмутаций.Генныеболезничеловека.Примеры.
Ген-участок ДНК, который несет в себе информацию о строении какого либо белка Свойства:
1 дискретность действия- развитие различных признаков контролируется разными генами. 2 стабильность - передается в ряду поколений в неизменном виде.
3 специфичность - каждый из генов обуславливает развитие определенного признака. 4 плейотропия - способность генов обеспечивать развитие одновременно нескольких признаков
Генные мутации связаны с изменением внутренней структуры генов, что превращает одни аллели в другие. Можно выделить несколько типов генных мутаций на молекулярном уровне:
-
замена пар нуклеотидов -
делеция -
вставка нуклеотида -
перестановка (инверсия) участка гена.
Замена пар нуклеотидов. Точковые мутации с заменой оснований разделяют на два класса: транзиции (и трансверсии Замена пуринового основания на другое пуриновое, или одного пиримидинового на другое пиримидиновое – транзиция. Замена пуринового основания на пиримидиновое и наоборот – трансверсия. При замене нуклеотидов в структурных генах происходит изменение смысла гена – возникают миссенс-мутации.
При этом одна аминокислота в полипептиде замещается другой. Фенотипическое проявление мутации зависит от положения аминокислоты в полипептиде. При замене последовательности ЦТЦ на ЦАЦ возникает серповидно-клеточная анемия. Образуется новый полипептид и гемоглобин имеет совсем другие свойства. Некоторые миссенс- мутации приводят к возникновению фермента, обладающего высокой активностью в одних условиях и средней в других условиях. Т. к. генетический код вырожден, то при замене триплетов, кодирующий одну и ту же аминокислоту, мутации не проявляются. Другой вид мутаций – нонсенс - мутации. При этих мутациях при замене одного
нуклеотида другим образуются бессмысленные триплеты. Синтез полипептида прекращается и белок имеет совсем иные свойства.
УАГ. УАА. УГА. бессмысленные триплеты.
Делеция или вставка одного или нескольких нуклеотидов ведут за собой утрату или вставку одной или нескольких аминокислот в полипептиде. эффекта может не быть. Если происходят делеция или вставка 1 нуклеотида (или другого числа нуклеотидов не кратного 3), наблюдается сдвиг рамки считывания, при этом нарушается структура полипептида.
Большинство изменений молекулярной структуры генов приводит к новым формам считывания генетической информации, которая реализуется в метаболических путях и биохимических реакциях, появляются новые свойства клеток и всего организма. В организме происходит большое количество мутаций. Они затрагивают интеллект, поведение, метаболические признаки и т. д. мутации, изменяющие видимые морфологические признаки – видимые (мутация альбинизма). Нормальный доминантный ген превращается в рецессивный,
выработка меланина прекращается, фенотипически проявляется белой окраской волос и глаз. Есть группа биохимических мутаций, которые выявляются с помощью сложных биохимических способов. Например, у человека синтезируется ряд ферментов, осуществляющих превращение лактозы в галактозу. При отсутствии фермента-лактазы происходит брожение в толстом кишечнике, газообразование и др. могут быть детская и взрослая формы. При накоплении галактозы – галактоземия, которая может привести к умственной отсталости.
Мутации, нарушающие жизнь – летальные, полулетальные и сублетальные.
Летальные – гибель зиготы или развившегося организма на определенной стадии эмбриогенеза – выкидыши.
Полулетальные и сублетальные ослабляют жизнеспособность организма или отдельных клеток (например, брахидактилия – гомозиготы погибают).
Генные болезни – это большая группа заболеваний, возникающих в результате повреждения ДНК на уровне