Файл: Наследственность и изменчивость фундаментальные свойства живого, их.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 25.10.2023

Просмотров: 571

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Взаимодействие аллельных генов (доминирование, неполное доминирование, кодоминирование).

Взаимодействие неаллельных генов (комплементарность, эпистаз, полимерия, модифицирующеедействиегенов).

Процессинг, сплайсинг. Роль РНК в процессе реализации наследственной информации.

Рибосомный цикл синтеза белка (инициация, элонгация, терминация). Посттрансляционныепреобразования белков.

Геном, кариотип как видовые характеристики. Характеристика кариотипа человекавнорме.

Болезни человека с наследственной предрасположенностью, механизмы их возникновенияи проявления. Примеры.

Модификации и их характеристики. Норма реакции признака. Фенокопии. Адаптивныйхарактермодификаций.

Медико-генетическиеаспектыбрака.Медико-генетическоеконсультирование.

Онтогенез как процесс реализации наследственной информации в определенных условияхсреды.

Типыэмбриогенеза.

Особенности эмбрионального развития человека. Периодизация эмбриогенеза человека.

Развитиезародыша,эмбрионаиплода.

Взаимодействие частей развивающегося организма. Эмбриональная индукция. ОпытШпемана.

Критическиепериодывонтогенезечеловека.

Характеристикадорепродуктивногопериода.

Старениеистарость –причинаиследствие.

.

Регенерация.Физиологическаярегенерация,еёзначение.

Биологическое и медицинское значение проблемы регенерации. Проявление регенерационнойспособности у человека.

Генетические, клеточные и системные основы гомеостатических реакций организма.

Клиническаяибиологическаясмерть.Реанимация.

Биологические ритмы. Хронобиология, хрономедицина, хроногигиена, хронофармакология,десинхронозы.

Биологическаяэволюция.Современныетеорииэволюции.

Генетическийгрузиегоэволюционноезначение.

Индивидуальное и историческое развитие. Закон зародышевого сходства. Биогенетическийзакон. Рекапитуляция.

Филогенезиммуннойсистемы.

Биологические предпосылки прогрессивного развития гоминид. Антропогенез. Характеристикаосновных этапов.

ядра и цитоплазмы, обеспечивающие морфолого-функциональное единство клетки. Под действием входящих из цитоплазмы в ядро регуляторов активности генов (обычно белков) происходит активация или же инактивация транскрипции тех или иных ядерных генов. В ядро поступают также предшественники и ферменты, необходимые для репликации ДНК, синтеза РНК, а также белки, входящие в состав хроматина, ядрышек и других структур ядра. У простейших и некоторых низших растений перед митозом в ядро поступают тубулины — белки, из которых строятся микротрубочки митотического веретена. Из ядра в цитоплазму, вероятно, через поры, выходят продукты генной активности — различной формы РНК и РНП, которые в дальнейшем обеспечивают синтез белка в цитоплазме и определяют его специфичность. Таким образом, ядро управляет всеми белковыми синтезами и через них физиологическими и морфологическими процессами в клетке, а цитоплазма регулирует (по принципу обратной связи) активность генетического аппарата ядра и снабжает его материалами и энергией. В более широком смысле слова к ядерно- цитоплазматическому взаимодействию относятся также взаимодействия геномов ядра и митохондрий, ядра и пластид (межгеномные взаимодействия). Основной метод изучения ядерно-цитоплазматического взаимодействия — получение ядерно-цитоплазматических гибридов путём пересадки ядер или слияния клеток.

Почти все РНК клетки синтезируются в ядре. В этом процессе, называемом транскрипцией, используется хранящаяся в ДНК информация.

Синтез рибосомнойРНКпроисходит в ядрышках, в то время

как матричные(информационные) и транспортныеРНКсинтезируются в эухроматине.
Репликация — катализируемый ферментами процесс удвоения ДНК — также локализована в ядре
Нуклеотидные блоки, необходимые для репликации и транскрипции в ядре, должны поступать из цитоплазмы. Их включение в РНК приводит к образованию первичных продуктов, которые последовательно модифицируются путем расщепления, удаления частей молекулы и включения дополнительных нуклеотидов (созревание РНК). Наконец,
мРНК и тРНК, образовавшиеся в ядре, транспортируются в цитоплазму для участия в биосинтезе белков (трансляции)
Белки не могут синтезироваться в ядре, и поэтому все ядерные белки должны быть импортированы из цитоплазмы. Это, например, гистоновыеи негистоновые белки, связанные в хроматине с ДНК, полимеразы, гормональные рецепторы, факторы транскрипции и рибосомные белки. Рибосомные белки, находясь еще в ядрышке, начинают ассоциировать с рРНК, образуя рибосомные субчастицы.
Одной из очень специфический функций ядра является биосинтез НАД+. Предшественник этого кофермента, никотинамидмононуклеотидсинтезируется в цитоплазме и затем транспортируется в ядрышко для превращения в динуклеотид, который после этого возвращается в цитоплазму.
  1. Этапы развития многоклеточного организма (необходимые условия развития): пролиферация,детерминация,дифференцировкаклеток,морфогенез,апоптоз.


У многоклеточных животных в составе онтогенеза принято различать фазы эмбрионального (под покровом яйцевых оболочек) и постэмбрионального (за пределами яйца) развития, а у живородящих животных пренатальный (до рождения) и постнатальный (после рождения) онтогенез.
Пролиферация разрастание ткани организма путём размножения клеток делением.
детерминация — это процесс определения дальнейшего пути развития клеток. В эмбриологии возникновение качественного своеобразия частей организма на ранних стадиях его развития и определяющее путь дальнейшего развития частей зародыша
Дифференцировка клеток — процесс реализации генетически обусловленной программы формирования специализированного фенотипа клеток, отражающего их способность к тем или иным профильным функциям. Иными словами, фенотип клеток есть результат координированной экспрессии (то есть согласованной функциональной активности) определённого набора генов.
В процессе дифференцировки менее специализированная клетка становится более

специализированной. Например, моноцит развивается в макрофаг, промиобласт развивается в миобласт. Дифференцировка клеток происходит не только в эмбриональном развитии, но и во взрослом организме (при кроветворении, сперматогенезе, регенерации поврежденных тканей).
Морфогене́з — возникновение и развитие органов, систем и частей тела организмов как в индивидуальном (онтогенез), так и в историческом, или эволюционном, развитии (филогенез).Процесс морфогенеза контролирует организованное пространственное распределение клеток во время эмбрионального развития организма. Морфогенез может проходить также и в зрелом организме, в клеточных культурах или опухолях. Морфогенез также описывает развитие неклеточных форм жизни, у которых нет эмбриональной стадии в их жизненном цикле. Морфогенез описывает эволюцию структур тела в пределах таксономической группы.
Апопто́з (др.-греч. ἀπόπτωσις — опадание листьев) — программируемая клеточная смерть, регулируемый процесс самоликвидации на клеточном уровне, в результате которого клетка фрагментируется на отдельные апоптотические тельца, ограниченные

плазматической мембраной. Фрагменты погибшей клетки обычно очень быстро (в среднем за 90 минут[1]) фагоцитируются (захватываются и перевариваются) макрофагами либо соседними клетками, минуя развитие воспалительной реакции.

  1. 1   ...   11   12   13   14   15   16   17   18   ...   33

Взаимодействие частей развивающегося организма. Эмбриональная индукция. ОпытШпемана.



Эмбриональная индукция — это взаимодействие частей развивающегося зародыша, при котором один участок зародыша влияет на судьбу другого участка. Явление эмбриональной индукции с начала XX в. изучает экспериментальная эмбриология.
Классическими считают опыты немецкого ученого Г. Шпемана и его сотрудников (1924) на зародышах амфибий. Для того чтобы иметь возможность проследить за судьбой клеток определенного участка зародыша, Шпеман использовал два вида тритонов: тритона

гребенчатого, яйца которого лишены пигмента и потому имеют белый цвет, и тритона полосатого, яйца которого благодаря пигменту имеют желто-серый цвет.
Один из опытов заключается в следующем: кусочек зародыша из области дорсальной губы бластопора на стадии гаструлы тритона гребенчатого пересаживают на боковую или вентральную сторону гаструлы тритона полосатого (рис. 8.8). В месте пересадки происходит развитие нервной трубки, хорды и других органов. Развитие может достичь довольно продвинутых стадий с образованием дополнительного зародыша на боковой или вентральной стороне зародыша реципиента. Дополнительный зародыш содержит в основном клетки зародыша реципиента, но светлые клетки зародыша-донора тоже обнаруживаются в составе различных органов.
Из этого и подобных опытов следует несколько выводов. Во-первых, участок, взятый из спинной губы бластопора, способен направлять или даже переключать развитие того материала, который находится вокруг него, на определенный путь развития. Он как бы организует, или индуцирует, развитие зародыша как в обычном, так и в
нетипичном месте. Во-вторых, боковая и брюшная стороны гаструлы обладают более широкими потенциями к развитию, нежели их презумптивное (предполагаемое) проспективное направление, так как вместо обычной поверхности тела в условиях эксперимента там образуется целый зародыш. В-третьих, достаточно точное строение новообразованных органов в месте пересадки указывает на эмбриональную регуляцию. Это означает, что фактор целостности организма приводит к достижению хорошего конечного результата из нетипичных клеток в нетипичном месте, как бы управляя процессом, регулируя его в целях достижения этого результата.
Способность эмбрионального материала реагировать на различного рода влияния изменением своей презумптивной судьбы получила название компетенции.

  1. Целостность онтогенеза. Эмбриональная регуляция в разные периоды эмбриогенеза.



На всех этапах развития зародыш представляет собой целостность благодаря тому, что на всех уровнях его организации (молекулярном, клеточном, тканевом и др.) осуществляется интеграция. Под интеграцией рассматривают объединение и координацию действий разных частей живой системы. Механизмы интеграции в применении к биологическим объектам в общей форме изучают биокибернетика и теория систем. Наиболее известная форма интеграции в эмбриогенезе - эмбриональная индукция.Эмбриональная индукция - это взаимодействие между частями развивающегося организма, в процессе которого одна часть (индуктор), приходя в контакт с другой частью (реагирующей системой), определяет направление развития последней. Явление индукции открыто в 1901 году немецким эмбриологом, лауреатом Нобелевской премии 1935 года X. Шпеманом (1869-1941) при изучении образования у земноводных хрусталика глаза из эктодермы под действием зачатка глаза: образующийсякак выпячивание переднего отдела стенки нервной трубки