ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 02.04.2021

Просмотров: 344

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
background image

Page 40 of 57

Accepted Manuscript

40

Table 3: 

Parameter values after optimization of the point defect model on the experimental 

impedance data for iron in borate buffer solution [0.3 M 

H

3

BO

3

 + 0.075 M 

Na

2

B

4

O

7

] + 0.001 M 

EDTA

 [Ethylenediaminetetraacetic acid, 

EDTA

, disodium salt], at T=21

o

C.

pH=8.15

E

app

 vs SHE/V

0.044

0.244

0.544

0.844

Average

Current density (A cm

-2

)

1.28×10

-6

1.81×10

-6

5.20×10

-7

4.75×10

-7

------------

Thickness of barrier layer (nm) 0.86

1.00

1.57

1.73

------------

CPE-Y

 (S s

α

 cm

-2

)

1.94×10

-5

1.25×10

-5

4.67×10

-6

5.30×10

-6

------------

CPE-

α

0.94

0.95

0.94

0.96

------------

Electric field (ε)

3×10

6

3×10

6

3×10

6

3×10

6

assumed

Warburg coefficient (σ)

1.97×10

5

7.38×10

5

1.61×10

6

6.09×10

5

------------

D

i

(cm

2

 s

-1

)

1.08×10

-15

3.03×10

-14

1.18×10

-14

1.42×10

-14

------------

Polarizability of the BOI (α)

0.724

0.724

0.724

0.724

0.724

Transfer coeff. reaction 1 (α

2

)

0.01

0.003

0.02

0.01

0.01

Transfer coeff. reaction 2 (α

3

)

0.19

0.17

0.18

0.17

0.17

k

0

2

 (mol cm

-2

 s

-1

)

3.88×10

-12

5.95×10

-12

1.68×10

-12

1.54×10

-12

3.2×10

-12

k

0

3

 (mol cm

-2

 s

-1

)

4.98×10

-16

4.47×10

-16

8.85×10

-16

5.03×10

-16

5.8×10

-16

k

0

7

 (mol cm

-2

 s

-1

)

5.52×10

-12

6.68×10

-12

1.99×10

-12

2.49×10

-12

5.5×10

-12

R

s

 (ohm cm

2

)

36

34.6

34.6

34.7

------------

Φ

0

f/s

-0.1

-0.1

-0.1

-0.1

assumed

β

-0.03

-0.03

-0.03

-0.03

assumed

C

dl

 (F cm

-2

)

1.16×10

-6

1.63×10

-6

4.25×10

-6

1.26×10

-6

------------

R

ct

 (ohm cm

2

)

3.46×10

9

2.96×10

9

3.86×10

9

2.97×10

9

------------

pH=10

E

app

 vs SHE/V

0.044

0.244

0.544

0.844

Average

Current density (A cm

-2

)

3.42×10

-7

5.15×10

-7

7.62×10

-7

4.55×10

-7

-----------

Thickness of barrier layer (nm) 1.47

1.56

2.15

2.28

-----------

CPE-Y

 (S s

α

 cm

-2

)

1.79×10

-5

1.21×10

-5

7.60×10

-6

6.15×10

-6

-----------

CPE-

α

0.94

0.96

0.96

0.94

-----------

Electric field (ε)

3×10

6

3×10

6

3×10

6

3×10

6

assumed

Warburg coefficient (σ)

1.32×10

5

7.54×10

4

1.40×10

5

1.35×10

5

-----------

D

i

 (cm

2

 s

-1

)

3.47×10

-17

2.55×10

-17

1.94×10

-16

6.42×10

-17

-----------

Polarizability of the BOI (α)

0.724

0.724

0.724

0.724

0.724

Transfer coeff. reaction 1 (α

2

)

0.02

0.01

0.005

0.01

0.01

Transfer coeff. reaction 2 (α

3

)

0.11

0.14

0.11

0.19

0.13

k

0

2

 (mol cm

-2

 s

-1

)

1.30×10

-12

1.78×10

-12

2.80×10

-12

1.68×10

-12

1.89×10

-12

k

0

3

 (mol cm

-2

 s

-1

)

2.03×10

-16

2.69×10

-16

1.78×10

-16

7.16×10

-16

3.41×10

-16

k

0

7

 (mol cm

-2

 s

-1

)

3.35×10

-12

4.64×10

-12

1.27×10

-12

2.12×10

-12

2.84×10

-12

R

s

 (ohm cm

2

)

31.5

31.5

34.6

32

-----------

Φ

0

f/s

-0.1

-0.1

-0.1

-0.1

assumed

β

-0.03

-0.03

-0.03

-0.03

assumed

C

dl

(F cm

-2

)

2.19×10

-7

8.04×10

-7

4.89×10

-7

2.35×10

-7

-----------

R

ct

 (ohm cm

2

)

3.54×10

9

3.22×10

9

3.68×10

9

3.76×10

9

-----------


background image

Page 41 of 57

Accepted Manuscript

41

Figure Captions

Figure 1

. Interfacial defect generation/annihilation reactions that are postulated to occur in the 

growth of anodic barrier oxide films according to the Point Defect Model.

m

 metal atom, 

M

V

cation vacancy on the metal sublattice of the barrier layer, 

i

M

 interstitial cation, 

M

M

 metal 

cation on the metal sublattice of the barrier layer, 

O

V

 oxygen vacancy on the oxygen 

sublattice of the barrier layer, 

O

O

 oxygen anion on the oxygen sublattice of the barrier layer, 

M

 metal cation in solution.

Figure 2. 

Equivalent electrical circuit describing the total impedance of the system

Figure 3.  

Randles equivalent electrical circuit describing the impedance of the redox reaction 

that accepts the electronic charge from the barrier layer. Here 

W

z

– is the solution-based Warburg 

impedance, 

R

ct

 is the charge transfer resistance of electrochemical cathodic reaction (e.g., 

hydrogen evolution) and 

C

dl

 is the capacity of the double layer.

Figure 4.

  Nyquist plot for parallel impedance for the case for iron in borate buffer solution [0.3 

H

3

BO

3

 + 0.075 M 

Na

2

B

4

O

7

] + 0.001 M 

EDTA

 [Ethylenediaminetetraacetic acid, 

EDTA

disodium salt], 

pH

=8.15, 

T

 = 21 

o

C and 

E

 = 0.044 V (

SHE

).

Figure 5.

  Bode plot (magnitude of the impedance) for the case for iron in borate buffer solution 

[0.3 M 

H

3

BO

3

 + 0.075 M 

Na

2

B

4

O

7

] + 0.001 M 

EDTA

, pH=8.15, 

T

 = 21 

o

C, and 

E

 = 0.044 V 

(

SHE

).

Figure 6.

  Bode plot (phase angle) for the case for iron in borate buffer solution [0.3 M 

H

3

BO

3

 + 

0.075 M 

Na

2

B

4

O

7

] + 0.001 M 

EDTA

pH

=8.15, 

T

 = 21 

o

C and 

E

 = 0.044 V (SHE).

Figure 7.

 Experimental and simulated impedance spectra for iron in borate buffer solution [0.3 

H

3

BO

3

  + 0.075 M 

Na

2

B

4

O

7

 , as appropriate] + 0.001 M 

EDTA

 [Ethylenediaminetetraacetic

acid, disodium salt], (a) pH = 8.15 and (b)10, T=21 

o

C as a function of applied potential, solid 

lines show the best fit calculation according to PDM.

Figure 8.  C

omparison of obtained kinetic parameters from PDM optimization as a function of 

applied potential (a) standard rate constants (pH=8.15), (b) transfer coefficients (pH=8.15), (c) 
standard rate constants (pH=10.0) and (d) transfer coefficients (pH=10.0) (Lines are showing the 
linear regressions).

Figure 9.

 Comparison between the experimental and calculated steady-state data (a) current 

density (pH=8.15), (b) barrier layer thickness (pH=8.15), (c) current density (pH=10.0) and (d) 
barrier layer thickness (pH=10.0) (Lines are showing the linear regressions).

Figure 10. 

Calculated diffusivity of iron interstitials as a function of potential, 

T

 = 22 

o

C(Lines 

are showing the linear regressions).


background image

Page 42 of 57

Accepted Manuscript

42

Metal

Barrier Oxide Layer                 

Outer Layer/Solution

(1)

e

v

M

V

m

m

M

k

M

1



                     

(4)



e

V

M

M

M

k

M

)

(

4

                |                                              |

(2)



e

v

M

m

m

i

k

2

                           

(5)



e

M

M

k

i

)

(

5

                |                                              |

(3)



e

V

2

M

m

..

O

M

k

3

                         

(6)



H

2

O

O

H

V

O

k

2

..

O

6

                |                                              |

               (7)



e

O

H

M

H

MO

k

)

(

2

2

2

/

7

                |                                              |

        (

x = L

)                                                                   (

x = 0

)

Fig. 1


background image

Page 43 of 57

Accepted Manuscript

43

Fig.2

Fig.3

Fig.4


background image

Page 44 of 57

Accepted Manuscript

44

Fig.5

Fig.6