ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 07.04.2021
Просмотров: 403
Скачиваний: 1
11
Ɂɚɞɚɱɚ
4.
ȼɵɱɢɫɥɢɬɶ ɦɨɦɟɧɬɵ ɢɧɟɪɰɢɢ ɨɬɧɨɫɢɬɟɥɶɧɨ ɨɫɟɣ ɤɨɨɪɞɢɧɚɬ
z
y
x
,
,
ɬɨɧɤɨɣ ɨɞɧɨɪɨɞɧɨɣ ɤɪɭɝɨɜɨɣ ɩɥɚɫɬɢɧɵ ɪɚɞɢɭɫɚ
r ,
ɜɧɭɬɪɢ ɤɨɬɨɪɨɣ
ɜɵɪɟɡɚɧ ɤɜɚɞɪɚɬ ɫɨ ɫɬɨɪɨɧɨɣ
a ,
ɰɟɧɬɪɵ ɤɜɚɞɪɚɬɚ ɢ ɤɪɭɝɚ ɫɨɜɩɚɞɚɸɬ
.
M
–-
ɦɚɫɫɚ ɩɥɚɫɬɢɧɵ ɫ ɜɵɪɟɡɨɦ
.
)
2
(
)
1
(
x
x
x
J
J
J
,
ɝɞɟ
)
1
(
x
J
–
ɦɨɦɟɧɬ ɢɧɟɪɰɢɢ
ɤɪɭɝɚ
,
)
2
(
x
J
–
ɦɨɦɟɧɬ
ɢɧɟɪɰɢɢ
ɤɜɚɞɪɚɬɚ
.
Ɉɩɪɟɞɟɥɢɬɟ
Z
Y
J
J
,
ɫɚɦɨɫɬɨɹɬɟɥɶɧɨ
.
2
2
)
1
(
)
1
(
r
M
J
x
,
6
2
)
2
(
)
2
(
a
M
J
x
.
ɇɚɣɞɟɦ ɦɚɫɫɵ ɤɪɭɝɚ ɢ ɤɜɚɞɪɚɬɚ
)
2
(
)
1
(
,
M
M
ɱɟɪɟɡ
M
:
2
(1)
(2)
(1)
(1)
2
2
(1)
2
(1
),
a
M
M
M
M
M
r
a
M
r
S
S
M
a
r
r
M
2
2
2
)
1
(
S
S
,
M
a
r
a
r
a
M
M
2
2
2
2
2
)
1
(
)
2
(
S
S
,
M
a
r
a
r
J
x
)
(
6
3
2
2
4
4
S
S
.
ȿɳɺ ɧɟɫɤɨɥɶɤɨ ɡɚɞɚɱ ɞɥɹ ɫɚɦɨɫɬɨɹɬɟɥɶɧɨɝɨ ɪɟɲɟɧɢɹ
:
ɇɚɣɬɢ
ɨɫɟɜɵɟ
ɦɨɦɟɧɬɵ
ɢɧɟɪɰɢɢ
y
x
J
J
,
ɞɥɹ
ɨɞɧɨɪɨɞɧɨɝɨ ɬɨɧɤɨɝɨ ɤɪɭɝɥɨɝɨ ɞɢɫɤɚ ɪɚɞɢɭɫɚ
R
ɢ
ɦɚɫɫɨɣ
M
.
Ɉɫɢ
ɋɯ
ɢ
ɋɭ
ɩɪɨɯɨɞɹɬ ɱɟɪɟɡ ɰɟɧɬɪ ɞɢɫɤɚ ɢ
ɥɟɠɚɬ ɜ ɟɝɨ ɩɥɨɫɤɨɫɬɢ
.
ɇɚɣɬɢ
y
x
J
J
,
ɞɥɹ ɬɪɟɭɝɨɥɶɧɨɣ ɩɥɚɫɬɢɧɵ ɫ ɤɚɬɟɬɚɦɢ
a
ɢ
b
ɢ ɦɚɫɫɨɣ
M
,
ɚ ɬɚɤɠɟ
1
1
,
y
x
J
J
.
Ɍɨɱɤɚ ɋ
–
ɰɟɧɬɪ
ɦɚɫɫ ɬɪɟɭɝɨɥɶɧɢɤɚ
.
12
ɉɪɹɦɨɣ ɫɩɥɨɲɧɨɣ ɤɪɭɝɥɵɣ ɤɨɧɭɫ ɦɚɫɫɨɣ
M
ɢ
ɪɚɞɢɭɫɨɦ ɨɫɧɨɜɚɧɢɹ
R
.
Ɉɫɶ
z
ɧɚɩɪɚɜɥɟɧɚ ɜɞɨɥɶ ɨɫɢ
ɫɢɦɦɟɬɪɢɢ
.
Ɉɬɜɟɬ
2
3
,
0
MR
J
z
.
ɋɩɥɨɲɧɨɣ ɲɚɪ ɦɚɫɫɨɣ
M
ɢ ɪɚɞɢɭɫɨɦ
R
ɨɫɶ
z
ɧɚɩɪɚɜɥɟɧɚ ɜɞɨɥɶ ɞɢɚɦɟɬɪɚ
.
Ɉɬɜɟɬ
2
4
,
0
MR
J
z
.
§3.
Ʉɨɥɟɛɚɬɟɥɶɧɨɟ ɞɜɢɠɟɧɢɟ
.
ɋɜɨɛɨɞɧɵɟ ɤɨɥɟɛɚɧɢɹ ɦɚɬɟɪɢɚɥɶɧɨɣ ɬɨɱɤɢ
Ɂɚɞɚɱɚ ʋ
1.
Ƚɪɭɡ ɜɟɫɨɦ Ɋ
= 98
ɧ ɩɨɞɜɟɲɟɧ ɤ ɤɨɧɰɭ ɩɪɭɠɢɧɵ
,
ɧɚɯɨɞɢɜɲɟɣɫɹ ɜ ɧɚɱɚɥɶɧɵɣ ɦɨɦɟɧɬ ɜ ɩɨɤɨɟ ɜ ɧɟɞɟɮɨɪɦɢɪɨɜɚɧɧɨɦ
ɫɨɫɬɨɹɧɢɢ
,
ɢ ɨɬɩɭɳɟɧ ɛɟɡ ɬɨɥɱɤɚ
.
ɇɚɣɬɢ ɭɪɚɜɧɟɧɢɟ ɤɨɥɟɛɚɧɢɹ ɝɪɭɡɚ
,
ɟɫɥɢ
ɢɡɜɟɫɬɧɨ
,
ɱɬɨ ɞɥɹ ɞɟɮɨɪɦɚɰɢɢ ɩɪɭɠɢɧɵ ɧɚ
1
ɫɦ ɧɚɞɨ ɩɪɢɥɨɠɢɬɶ ɤ ɧɟɣ
ɫɢɥɭ
,
ɦɨɞɭɥɶ ɤɨɬɨɪɨɣ ɪɚɜɟɧ
14,4
ɧ
.
Ɋɟɲɟɧɢɟ
:
ɇɚɩɪɚɜɢɦ ɨɫɶ ɯ ɩɨ ɜɟɪɬɢɤɚɥɢ ɜɧɢɡ
.
Ɍɨɱɤɚ Ɉ
–
ɧɚɱɚɥɨ
ɨɬɫɱɟɬɚ ɜ ɩɨɥɨɠɟɧɢɢ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ ɝɪɭɡɚ
.
ȼ ɧɚɱɚɥɶɧɵɣ ɦɨɦɟɧɬ
ɝɪɭɡ ɩɨɞɜɟɲɟɧ ɤ ɤɨɧɰɭ Ɇ
0
ɧɟɞɟɮɨɪɦɢɪɨɜɚɧɧɨɣ ɩɪɭɠɢɧɵ
.
ȼ ɩɨɥɨɠɟɧɢɢ
ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ ɤ ɝɪɭɡɭ ɩɪɢɥɨɠɟɧɵ ɫɢɥɵ
:
Ɋ
–
ɟɝɨ ɜɟɫ
,
ɧɚɩɪɚɜɥɟɧɧɵɣ ɩɨ ɜɟɪɬɢɤɚɥɢ ɜɧɢɡ
,
ɫɬɚɬɢɱɟɫɤɚɹ ɫɢɥɚ ɭɩɪɭɝɨɫɬɢ
F
ɫɬ
=cd
,
ɧɚɩɪɚɜɥɟɧɧɚɹ ɜɜɟɪɯ
.
ɂɡ ɭɫɥɨɜɢɹ ɪɚɜɧɨɜɟɫɢɹ ɝɪɭɡɚ ɫɥɟɞɭɟɬ
:
0
ɫɬ
F
P
ɢɥɢ
0
cd
P
,
ɨɬɤɭɞɚ ɧɚɣɞɟɦ
d=
Ɋ
/
ɫ
–
ɫɬɚɬɢɱɟɫɤɭɸ ɞɟɮɨɪɦɚɰɢɸ ɩɪɭɠɢɧɵ
,
ɫ
–
ɤɨɷɮɮɢɰɢɟɧɬ ɭɩɪɭɝɨɫɬɢ ɩɪɭɠɢɧɵ
.
13
ɇɚɱɚɥɶɧɵɟ ɭɫɥɨɜɢɹ ɞɜɢɠɟɧɢɹ ɝɪɭɡɚ
:
ɉɪɢ
0
0
0 :
,
0
P
t
x
x
x
x
c
,
cD
F
,
ɝɞɟ
F –
ɫɢɥɚ ɭɩɪɭɝɨɫɬɢ
,
(
ɧɚɩɪɚɜɥɟɧɚ
ɜɫɟɝɞɚ
ɩɪɨɬɢɜɨɩɨɥɨɠɧɨ
ɫɦɟɳɟɧɢɸ
); D –
ɫɦɟɳɟɧɢɟ
ɤɨɧɰɚ
ɩɪɭɠɢɧɵ ɢɡ ɧɟɧɚɩɪɹɠɟɧɧɨɝɨ ɫɨɫɬɨɹɧɢɹ
,
ɬ
.
ɟ
.
x
d
MM
D
x
0
.
ɋɥɟɞɨɜɚɬɟɥɶɧɨ
,
)
(
x
d
c
F
x
. (1)
ɋɨɫɬɚɜɢɦ ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɝɪɭɡɚ ɜ
ɩɪɨɟɤɰɢɢ ɧɚ ɨɫɶ ɯ
:
x
F
P
x
m
, (2)
ɢɫɩɨɥɶɡɭɹ
(1),
ɩɨɥɭɱɢɦ ɢɡ
(2):
cx
cd
P
x
g
P
.
(3)
Ɂɚɩɢɲɟɦ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɟ ɭɪɚɜɧɟɧɢɟ
(3)
ɜ ɜɢɞɟ
0
2
x
k
x
,
(4)
ɝɞɟ
P
cg
k
–
ɤɪɭɝɨɜɚɹ ɱɚɫɬɨɬɚ ɤɨɥɟɛɚɧɢɣ
(
ɭɝɥɨɜɚɹ ɱɚɫɬɨɬɚ
).
Ɂɚɩɢɲɟɦ ɯɚɪɚɤɬɟɪɢɫɬɢɱɟɫɤɨɟ ɭɪɚɜɧɟɧɢɟ ɞɥɹ
(4)
0
2
2
k
O
.
Ʉɨɪɧɢ ɭɪɚɜɧɟɧɢɹ
ki
r
2
,
1
O
.
Ɋɟɲɟɧɢɟ ɭɪɚɜɧɟɧɢɹ
(4)
ɡɚɩɢɲɟɦ ɜ ɜɢɞɟ
)
sin(
)
cos(
2
1
kt
c
kt
c
x
. (5)
Ⱦɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɩɨɫɬɨɹɧɧɵɯ ɢɧɬɟɝɪɢɪɨɜɚɧɢɹ
,
ɜɵɱɢɫɥɢɦ ɫɤɨɪɨɫɬɶ
)
cos(
)
sin(
2
1
kt
k
c
kt
k
c
x
.
(6)
ɉɨɞɫɬɚɜɢɦ
(5)
ɢ
(6)
ɜ ɧɚɱɚɥɶɧɵɟ ɭɫɥɨɜɢɹ
0
0
0
,
0
P
t
x
x
x
x
c
.
ɇɚɯɨɞɢɦ
0
,
2
0
1
c
c
P
x
ɫ
.
ɍɪɚɜɧɟɧɢɹ ɞɜɢɠɟɧɢɹ ɝɪɭɡɚ ɩɪɢɦɟɬ ɜɢɞ
)
cos(
)
cos(
t
P
cg
c
P
kt
c
P
x
.
ɉɨɞɫɬɚɜɥɹɟɦ ɱɢɫɥɟɧɧɵɟ ɡɧɚɱɟɧɢɹ
ɫɦ
c
P
ɫ
P
cg
k
8
,
6
,
12
1
.
Ⱥɦɩɥɢɬɭɞɚ ɤɨɥɟɛɚɧɢɣ
a = 6,8 c
ɦ
;
ɧɚɱɚɥɶɧɚɹ ɮɚɡɚ ɤɨɥɟɛɚɧɢɣ
Į
= –
ʌ
/2
;
ɤɪɭɝɨɜɚɹ ɱɚɫɬɨɬɚ
k = 12
ɫ
-1
.
14
ɉɟɪɢɨɞ ɤɨɥɟɛɚɧɢɣ ɝɪɭɡɚ ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɮɨɪɦɭɥɟ
ɫ
k
T
52
.
0
2
S
.
Ɂɚɞɚɱɚ ʋ
2.
ɇɚɣɬɢ ɭɪɚɜɧɟɧɢɟ ɫɜɨɛɨɞɧɵɯ ɜɟɪɬɢɤɚɥɶɧɵɯ ɤɨɥɟɛɚɧɢɣ
ɫɭɞɧɚ ɜɟɫɨɦ Ɋ ɜ ɫɩɨɤɨɣɧɨɣ ɜɨɞɟ
.
ɉɥɨɳɚɞɶ ɟɝɨ ɫɟɱɟɧɢɹ ɧɚ ɭɪɨɜɧɟ ɫɜɨɛɨɞɧɨɣ
ɩɨɜɟɪɯɧɨɫɬɢ ɜɨɞɵ ɫɱɢɬɚɬɶ ɧɟ ɡɚɜɢɫɹɳɟɣ ɨɬ ɤɨɥɟɛɚɧɢɣ ɢ ɪɚɜɧɨɣ
S.
ȼ
ɧɚɱɚɥɶɧɵɣ ɦɨɦɟɧɬ ɰɟɧɬɪɭ ɬɹɠɟɫɬɢ ɋ
,
ɧɚɯɨɞɢɜɲɟɦɭɫɹ ɜ ɩɨɥɨɠɟɧɢɢ
ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ
,
ɛɵɥɚ ɫɨɨɛɳɟɧɚ ɜɟɪɬɢɤɚɥɶɧɨ ɜɧɢɡ ɫɤɨɪɨɫɬɶ
v
0
.
ȼɹɡɤɨɫɬɶɸ ɜɨɞɵ ɩɪɟɧɟɛɪɟɱɶ
.
ɍɞɟɥɶɧɵɣ ɜɟɫ ɜɨɞɵ ɪɚɜɟɧ Ȗ
= 1 T/
ɦ
3
.
Ɋɟɲɟɧɢɟ
.
ɇɚɩɪɚɜɢɦ ɨɫɶ ɯ ɜɟɪɬɢɤɚɥɶɧɨ ɜɧɢɡ
;
ɬɨɱɤɚ Ɉ
–
ɧɚɱɚɥɨ ɨɬɫɱɟɬɚ ɜ ɩɨɥɨɠɟɧɢɢ
ɪɚɜɧɨɜɟɫɢɹ ɰɟɧɬɪɚ ɬɹɠɟɫɬɢ ɋ ɫɭɞɧɚ
.
ɉɪɢ
ɷɬɨɦ ɜɵɫɨɬɚ ɩɨɞɜɨɞɧɨɣ ɱɚɫɬɢ ɫɭɞɧɚ ɪɚɜɧɚ
d.
Ʉ ɫɭɞɧɭ ɩɪɢɥɨɠɟɧɵ
:
Ɋ
–
ɜɟɫ ɜ ɰɟɧɬɪɟ
ɬɹɠɟɫɬɢ ɋ ɫɭɞɧɚ
, R
ɫɬ
–
ɧɨɪɦɚɥɶɧɚɹ
ɫɬɚɬɢɱɟɫɤɚɹ
ɪɟɚɤɰɢɹ
ɜɨɞɵ
ɜ
ɰɟɧɬɪɟ
ɬɹɠɟɫɬɢ Ʉ ɨɛɴɟɦɚ ɜɨɞɵ
,
ɜɵɬɟɫɧɟɧɧɨɣ
ɫɭɞɧɨɦ
.
Ɇɨɞɭɥɶ
R
ɫɬ
ɪɚɜɟɧ ɜɟɫɭ ɨɛɴɟɦɚ
V
ɜɨɞɵ
,
ɜɵɬɟɫɧɟɧɧɨɣ
ɫɭɞɧɨɦ
,
ɬ
.
ɟ
.
d
S
V
R
ɫɬ
J
J
,
ɫɥɟɞɨɜɚɬɟɥɶɧɨ
,
ɭɫɥɨɜɢɟ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ ɢɦɟɟɬ
ɜɢɞ
0
d
S
P
J
. (7)
ɇɚɱɚɥɶɧɵɟ ɭɫɥɨɜɢɹ ɞɜɢɠɟɧɢɹ ɰɟɧɬɪɚ ɬɹɠɟɫɬɢ ɋ
ɩɪɢ
0
,
0
:
0
v
x
x
t
. (8)
ɂɡ
-
ɡɚ ɧɚɥɢɱɢɹ ɧɚɱɚɥɶɧɨɣ ɫɤɨɪɨɫɬɢ
v
0
ɫɭɞɧɨ ɧɚɱɢɧɚɟɬ ɞɜɢɝɚɬɶɫɹ
ɜɟɪɬɢɤɚɥɶɧɨ
ɜɧɢɡ
.
Ɉɛɴɟɦ
ɜɨɞɵ
,
ɜɵɬɟɫɧɟɧɧɨɣ
ɫɭɞɧɨɦ
,
ɪɚɜɟɧ
)
(
x
d
S
.
Ɂɧɚɱɢɬ
,
ɩɪɨɟɤɰɢɹ ɧɚ ɨɫɶ ɯ ɧɨɪɦɚɥɶɧɨɣ ɪɟɚɤɰɢɢ
R
ɪɚɜɧɚ
)
(
x
d
S
R
x
J
. (9)
ɋɨɫɬɚɜɢɦ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɟ ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɰɟɧɬɪɚ ɬɹɠɟɫɬɢ ɋ ɜ
ɩɪɨɟɤɰɢɢ ɧɚ ɨɫɶ ɯ
x
x
R
P
x
m
.
Ɍɚɤ ɤɚɤ Ɋ
=
Ɋ
ɯ
,
ɢɫɩɨɥɶɡɭɹ ɭɪɚɜɧɟɧɢɹ
(1)
ɢ
(3),
ɩɨɥɭɱɢɦ
Sx
x
g
P
J
.
Ɂɚɩɢɲɟɦ ɭɪɚɜɧɟɧɢɟ ɫɜɨɛɨɞɧɵɯ ɤɨɥɟɛɚɧɢɣ ɜ ɤɚɧɨɧɢɱɟɫɤɨɦ ɜɢɞɟ
:
0
2
x
k
x
,
(10)
ɝɞɟ
k
P
S
g
J
–
ɤɪɭɝɨɜɚɹ ɱɚɫɬɨɬɚ
.
15
Ɂɚɩɢɲɟɦ ɢɫɤɨɦɨɟ ɪɟɲɟɧɢɟ ɭɪɚɜɧɟɧɢɹ
(4)
ɜ ɜɢɞɟ
)
sin(
D
kt
a
x
,
(11)
ɝɞɟ
2
2
0
2
0
k
x
x
a
–
ɚɦɩɥɢɬɭɞɚ ɤɨɥɟɛɚɧɢɣ
,
0
0
x
kx
arctg
D
–
ɧɚɱɚɥɶɧɚɹ ɮɚɡɚ
.
ɂɫɩɨɥɶɡɭɹ ɧɚɱɚɥɶɧɵɟ ɭɫɥɨɜɢɹ
(2),
ɧɚɣɞɟɦ ɚɦɩɥɢɬɭɞɭ ɢ ɧɚɱɚɥɶɧɭɸ ɮɚɡɭ
:
J
gS
P
v
k
v
a
0
0
,
0
D
. (12)
ɂɫɩɨɥɶɡɭɹ
(6),(7)
ɢ
(5),
ɨɤɨɧɱɚɬɟɥɶɧɨ ɩɨɥɭɱɢɦ
¸
¸
¹
·
¨
¨
©
§
t
P
gS
gS
P
v
x
J
J
sin
0
.
(13)
ɉɟɪɢɨɞ ɤɨɥɟɛɚɧɢɣ ɪɚɜɟɧ
J
S
S
gs
P
k
T
2
2
.
§4.
Ɂɚɬɭɯɚɸɳɢɟ ɤɨɥɟɛɚɧɢɹ
Ɂɚɞɚɱɚ ʋ
1.
Ƚɪɭɡ ɜɟɫɨɦ Ɋ
= 98 H,
ɩɨɞɜɟɲɟɧɧɵɣ ɤ ɤɨɧɰɭ ɩɪɭɠɢɧɵ
,
ɞɜɢɠɟɬɫɹ ɜ ɠɢɞɤɨɫɬɢ
.
Ʉɨɷɮɮɢɰɢɟɧɬ ɠɟɫɬɤɨɫɬɢ ɩɪɭɠɢɧɵ ɫ
=10
ɇ
/
ɫɦ
.
ɋɢɥɚ
ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɞɜɢɠɟɧɢɸ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚ ɩɟɪɜɨɣ ɫɬɟɩɟɧɢ ɫɤɨɪɨɫɬɢ ɝɪɭɡɚ
:
R=
ȕȣ
,
ɝɞɟ ȕ
=1,6
ɇɫ
/
ɫɦ
.
ɇɚɣɬɢ ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɝɪɭɡɚ
,
ɟɫɥɢ ɜ ɧɚɱɚɥɶɧɵɣ
ɦɨɦɟɧɬ ɝɪɭɡ ɛɵɥ ɫɦɟɳɟɧ ɢɡ ɩɨɥɨɠɟɧɢɹ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ ɜɧɢɡ ɧɚ
4
ɫɦ
ɢ ɟɦɭ ɛɵɥɚ ɫɨɨɛɳɟɧɚ ɜɧɢɡ ɧɚɱɚɥɶɧɚɹ ɫɤɨɪɨɫɬɶ ȣ
0
=4
ɫɦ
/
ɫ
.
Ɋɟɲɟɧɢɟ
.
ɇɚɩɪɚɜɢɦ ɨɫɶ ɯ ɜɟɪɬɢɤɚɥɶɧɨ ɜɧɢɡ ɩɨ
ɩɪɭɠɢɧɟ
,
ɧɚɱɚɥɨ ɨɬɫɱɟɬɚ ɜɨɡɶɦɟɦ ɜ
ɩɨɥɨɠɟɧɢɢ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ
.
ɇɚɱɚɥɶɧɵɟ ɭɫɥɨɜɢɹ ɞɜɢɠɟɧɢɹ ɝɪɭɡɚ
:
0
0
0,
4
,
4
/ .
t
x
x
ɫɦ
x
x
ɫɦ
c
ɂɡɨɛɪɚɡɢɦ ɝɪɭɡ ɜ ɩɨɥɨɠɟɧɢɢ
,
ɤɨɝɞɚ
ɩɪɭɠɢɧɚ ɩɨɥɭɱɢɬ ɭɞɥɢɧɟɧɢɟ
D = d + x.
ɋɢɥɚ ɭɩɪɭɝɨɫɬɢ ɩɪɭɠɢɧɵ
,
ɧɚɩɪɚɜɥɟɧɧɚɹ
ɜɟɪɬɢɤɚɥɶɧɨ ɜɜɟɪɯ
,
ɪɚɜɧɚ
)
(
x
d
c
F
x
.
(1)
ɋɨɫɬɚɜɢɦ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɟ ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɝɪɭɡɚ
:
x
x
R
F
P
x
m
.
ɉɨɞɫɬɚɜɢɦ ɜ ɭɪɚɜɧɟɧɢɟ ɡɧɚɱɟɧɢɹ
F
x
ɢ
R
x
: