ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 07.04.2021
Просмотров: 405
Скачиваний: 1
41
Ⱥɤɬɢɜɧɵɦɢ ɫɢɥɚɦɢ ɹɜɥɹɸɬɫɹ
:
Ɋ
–
ɜɟɫ ɤɪɢɜɨɲɢɩɚ
,
Ɋ
2
–
ɜɟɫ ɤɨɥɟɫɚ
2,
m
0
–
ɜɪɚɳɚɸɳɢɣ ɦɨɦɟɧɬ
,
ɩɪɢɥɨɠɟɧɧɵɣ ɤ ɤɪɢɜɨɲɢɩɭ
ɈȺ
.
ȼɫɟ ɫɜɹɡɢ
,
ɧɚɥɨɠɟɧɧɵɟ ɧɚ ɫɢɫɬɟɦɭ
,
ɢɞɟɚɥɶɧɵ
.
Ⱦɚɞɢɦ ɤɪɢɜɨɲɢɩɭ
ɈȺ
ɜɨɡɦɨɠɧɨɟ ɭɝɥɨɜɨɟ ɩɟɪɟɦɟɳɟɧɢɟ
GM
ɜ
ɧɚɩɪɚɜɥɟɧɢɢ ɜɨɡɪɚɫɬɚɧɢɹ ɭɝɥɚ
M
,
ɬ
.
ɟ
.
ɩɪɨɬɢɜ ɱɚɫɨɜɨɣ ɫɬɪɟɥɤɢ
.
Ⱦɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɨɛɨɛɳɟɧɧɨɣ ɫɢɥɵ
Q
M
ɜɵɱɢɫɥɢɦ ɫɭɦɦɭ ɪɚɛɨɬ
ɚɤɬɢɜɧɵɯ ɫɢɥ ɧɚ ɜɨɡɦɨɠɧɨɦ ɩɟɪɟɦɟɳɟɧɢɢ
GM
:
GM
M
GM
M
GM
G
cos
cos
2
0
OA
P
OC
P
m
A
.
Ɍɚɤ ɤɚɤ
OA=O
P
-A
P
=r
1
-r
2
,
ɚ
OC
OA
r
r
2
2
1
2
,
ɬɨ
>
@
G
M GM
A
m
P
P
r
r
1
2
2
2
0
2
1
2
cos
.
(1)
ɍɱɢɬɵɜɚɹ
,
ɱɬɨ
G
GM
M
A
Q
,
ɧɚɯɨɞɢɦ ɨɛɨɛɳɟɧɧɭɸ ɫɢɥɭ
,
ɫɨɨɬɜɟɬɫɬɜɭɸɳɭɸ
ɨɛɨɛɳɟɧɧɨɣ ɤɨɨɪɞɢɧɚɬɟ
M
:
>
@
Q
m
P
P
r
r
M
M
1
2
2
2
0
2
1
2
cos
. (2)
ɉɟɪɟɯɨɞɢɦ ɤ ɜɵɱɢɫɥɟɧɢɸ ɤɢɧɟɬɢɱɟɫɤɨɣ ɷɧɟɪɝɢɢ
Ɍ
ɦɟɯɚɧɢɡɦɚ
,
ɜ ɫɨɫɬɚɜ
ɤɨɬɨɪɨɝɨ ɜɯɨɞɹɬ ɦɚɫɫɵ ɤɪɢɜɨɲɢɩɚ
ɈȺ
ɢ ɡɭɛɱɚɬɨɝɨ ɤɨɥɟɫɚ
2 (
ɡɭɛɱɚɬɨɟ
ɤɨɥɟɫɨ
1
ɧɟɩɨɞɜɢɠɧɨ
),
ɬ
.
ɟ
.
T
T
T
( )
( )
1
2
. (3)
Ʉɢɧɟɬɢɱɟɫɤɚɹ ɷɧɟɪɝɢɹ ɤɪɢɜɨɲɢɩɚ
ɈȺ
,
ɜɪɚɳɚɸɳɟɝɨɫɹ ɜɨɤɪɭɝ ɧɟɩɨɞɜɢɠɧɨɣ
ɨɫɢ
Ɉ
,
ɩɟɪɩɟɧɞɢɤɭɥɹɪɧɨɣ ɤ ɩɥɨɫɤɨɫɬɢ ɪɢɫɭɧɤɚ
,
ɨɩɪɟɞɟɥɹɟɬɫɹ ɮɨɪɦɭɥɨɣ
T
I
O
( )
1
2
1
2
M
,
ɝɞɟ
I
P
g
OA
P
g
r
r
O
1
3
1
3
2
1
2
2
–
ɦɨɦɟɧɬ
ɢɧɟɪɰɢɢ
ɤɪɢɜɨɲɢɩɚ
.
ɋɥɟɞɨɜɚɬɟɥɶɧɨ
,
T
P
g
r
r
( )
(
)
1
1
2
2
2
1
6
M
. (4)
Ʉɢɧɟɬɢɱɟɫɤɚɹ ɷɧɟɪɝɢɹ ɡɭɛɱɚɬɨɝɨ ɤɨɥɟɫɚ
2,
ɫɨɜɟɪɲɚɸɳɟɝɨ ɩɥɨɫɤɨɟ
ɞɜɢɠɟɧɢɟ
,
ɪɚɜɧɚ
T
P
g
v
I
A
A
( )
2
2
2
2
2
1
2
1
2
Z
.
(5)
ɇɚɣɞɟɦ ɫɤɨɪɨɫɬɶ ɬɨɱɤɢ
Ⱥ
,
ɹɜɥɹɸɳɟɣɫɹ ɤɨɧɰɨɦ ɤɪɢɜɨɲɢɩɚ
ɈȺ
:
v
OA
r
r
A
(
)
M
M
1
2
. (6)
Ɋɚɫɫɦɨɬɪɢɦ ɫɤɨɪɨɫɬɶ ɬɨɣ ɠɟ ɬɨɱɤɢ Ⱥ
,
ɩɪɢɧɚɞɥɟɠɚɳɟɣ ɡɭɛɱɚɬɨɦɭ ɤɨɥɟɫɭ
2,
ɩɨ ɨɬɧɨɲɟɧɢɸ ɤ ɦɝɧɨɜɟɧɧɨɦɭ ɰɟɧɬɪɭ ɫɤɨɪɨɫɬɟɣ
P
ɤɨɥɟɫɚ
:
2
2
Z
r
v
A
. (7)
ɋɨɩɨɫɬɚɜɥɹɹ ɮɨɪɦɭɥɵ
(6)
ɢ
(7),
ɧɚɯɨɞɢɦ
:
Z
M
2
1
2
2
r
r
r
.
(8)
Ɇɨɦɟɧɬ
ɢɧɟɪɰɢɢ
ɡɭɛɱɚɬɨɝɨ
ɤɨɥɟɫɚ
2
ɜɵɱɢɫɥɹɟɬɫɹ
ɩɨ
ɮɨɪɦɭɥɟ
I
P r
g
A
2 2
2
2
.
(9)
42
ɉɨɫɥɟ ɩɨɞɫɬɚɧɨɜɤɢ ɡɧɚɱɟɧɢɣ
v
A
,
Z
2
ɢ
I
A
ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ ɢɡ ɮɨɪɦɭɥ
(6),
(8)
ɢ
(9)
ɜɵɪɚɠɟɧɢɟ
(5)
ɩɪɢɦɟɬ ɜɢɞ
T
P
g
r
r
( )
(
)
2
2
1
2
2
2
3
4
M
.
(10)
ȼɨɫɩɨɥɶɡɨɜɚɜɲɢɫɶ ɮɨɪɦɭɥɚɦɢ
(3), (4)
ɢ
(10),
ɡɚɩɢɲɟɦ ɜɵɪɚɠɟɧɢɟ
ɤɢɧɟɬɢɱɟɫɤɨɣ
ɷɧɟɪɝɢɢ
ɩɥɚɧɟɬɚɪɧɨɝɨ
ɦɟɯɚɧɢɡɦɚ
:
T
P
P
g
r
r
2
9
12
2
1
2
2
2
(
)
M
.
(11)
ȼɵɱɢɫɥɢɦ ɱɚɫɬɧɭɸ ɩɪɨɢɡɜɨɞɧɭɸ ɤɢɧɟɬɢɱɟɫɤɨɣ ɷɧɟɪɝɢɢ
Ɍ
ɩɨ ɨɛɨɛɳɟɧɧɨɣ
ɫɤɨɪɨɫɬɢ
M
:
M
M
w
w
2
2
1
2
)
(
6
9
2
r
r
g
P
P
T
ɢ
ɜɨɡɶɦɟɦ
ɩɪɨɢɡɜɨɞɧɭɸ
ɩɨɥɭɱɟɧɧɨɝɨ ɪɟɡɭɥɶɬɚɬɚ ɩɨ ɜɪɟɦɟɧɢ
:
M
M
w
w
2
2
1
2
)
(
12
9
2
r
r
g
P
P
T
dt
d
. (12)
Ɂɚɦɟɬɢɜ
,
ɱɬɨ ɤɢɧɟɬɢɱɟɫɤɚɹ ɷɧɟɪɝɢɹ
Ɍ
ɫɢɫɬɟɦɵ
,
ɨɩɪɟɞɟɥɟɧɧɚɹ
ɮɨɪɦɭɥɨɣ
(11),
ɧɟ ɡɚɜɢɫɢɬ ɨɬ ɨɛɨɛɳɟɧɧɨɣ ɤɨɨɪɞɢɧɚɬɵ
M
,
ɧɚɯɨɞɢɦ
:
0
wM
w
T
. (13)
ɉɨɫɥɟ ɩɨɞɫɬɚɧɨɜɤɢ ɜɵɪɚɠɟɧɢɣ
(2), (12), (13)
ɜ ɭɪɚɜɧɟɧɢɟ Ʌɚɝɪɚɧɠɚ
ɩɨɥɭɱɢɦ
ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɟ
ɭɪɚɜɧɟɧɢɟ
ɞɜɢɠɟɧɢɹ
ɦɟɯɚɧɢɡɦɚ
ɞɥɹ
ɨɛɨɛɳɟɧɧɨɣ ɤɨɨɪɞɢɧɚɬɵ
M
:
>
@
2
9
6
1
2
2
2
2
1
2
2
0
2
1
2
P
P
g
r
r
m
P
P
r
r
cos
M
M
,
ɨɬɤɭɞɚ ɨɩɪɟɞɟɥɹɟɦ ɢɫɤɨɦɨɟ ɭɝɥɨɜɨɟ ɭɫɤɨɪɟɧɢɟ
M
ɤɪɢɜɨɲɢɩɚ
ɈȺ
:
cos
M
M
3
2
2
2
9
0
2
1
2
2
g
m
P
P
r
r
P
P
. (14)
Ɋɚɜɧɨɦɟɪɧɨɟ ɜɪɚɳɟɧɢɟ ɤɪɢɜɨɲɢɩɚ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɩɪɢ ɜɵɩɨɥɧɟɧɢɢ
ɭɫɥɨɜɢɹ
:
m
P
P
r
r
0
2
1
2
1
2
2
cos
M
.
Ɂɚɞɚɱɚ ʋ
3.
Ʉ ɤɨɧɰɚɦ ɬɨɧɤɨɣ ɧɟɪɚɫɬɹɠɢɦɨɣ ɧɢɬɢ ɩɪɢɜɹɡɚɧɵ ɝɪɭɡ Ⱥ
ɜɟɫɨɦ Ɋ
1
ɢ ɝɪɭɡ ȼ ɜɟɫɨɦ Ɋ
2
.
ɇɢɬɶ ɩɟɪɟɛɪɨɲɟɧɚ ɱɟɪɟɡ ɛɥɨɤɢ
D
ɢ ȿ ɢ
ɨɯɜɚɬɵɜɚɟɬ ɫɧɢɡɭ ɩɨɞɜɢɠɧɨɣ ɛɥɨɤ Ʉ
.
Ʉ ɨɫɢ Ɉ
5
ɩɨɞɜɢɠɧɨɝɨ ɛɥɨɤɚ Ʉ
ɩɪɢɤɪɟɩɥɟɧ ɝɪɭɡ
L
ɜɟɫɨɦ Ɋ
6
;
Ɋ
3
–
ɜɟɫ ɛɥɨɤɚ
D,
Ɋ
4
–
ɜɟɫ ɛɥɨɤɚ ȿ
,
Ɋ
5
–
ɜɟɫ
ɛɥɨɤɚ
Ʉ
.
Ƚɪɭɡɵ
Ⱥ
ɢ
ȼ
ɞɜɢɠɭɬɫɹ
ɩɨ
ɧɚɤɥɨɧɧɵɦ
ɩɥɨɫɤɨɫɬɹɦ
,
ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ
ɪɚɫɩɨɥɨɠɟɧɧɵɦ ɩɨɞ ɭɝɥɚɦɢ
D
ɢ
E
ɤ ɝɨɪɢɡɨɧɬɭ
.
Ɉɩɪɟɞɟɥɢɬɶ ɭɫɤɨɪɟɧɢɹ ɝɪɭɡɨɜ Ⱥ
,
ȼ ɢ
L.
Ȼɥɨɤɢ ɫɱɢɬɚɬɶ ɨɞɧɨɪɨɞɧɵɦɢ
ɤɪɭɝɥɵɦɢ ɞɢɫɤɚɦɢ
.
ɋɢɥɚɦɢ ɬɪɟɧɢɹ ɫɤɨɥɶɠɟɧɢɹ ɝɪɭɡɨɜ ɨ ɧɚɤɥɨɧɧɵɟ
ɩɥɨɫɤɨɫɬɢ ɢ ɦɚɫɫɨɣ ɧɢɬɢ ɩɪɟɧɟɛɪɟɱɶ
.
43
Ɋɟɲɟɧɢɟ
.
ɋɢɫɬɟɦɚ ɢɦɟɟɬ ɞɜɟ ɫɬɟɩɟɧɢ ɫɜɨɛɨɞɵ
.
ȼ ɤɚɱɟɫɬɜɟ ɨɛɨɛɳɟɧɧɵɯ
ɤɨɨɪɞɢɧɚɬ ɜɵɛɟɪɟɦ ɥɢɧɟɣɧɵɟ ɤɨɨɪɞɢɧɚɬɵ
s
1
ɢ
s
2
,
ɧɚɩɪɚɜɥɟɧɧɵɟ ɜɞɨɥɶ
ɧɚɤɥɨɧɧɵɯ ɩɥɨɫɤɨɫɬɟɣ ɜɧɢɡ
.
Ɂɚɩɢɲɟɦ ɭɪɚɜɧɟɧɢɹ Ʌɚɝɪɚɧɠɚ ɞɥɹ ɨɛɨɛɳɟɧɧɵɯ ɤɨɨɪɞɢɧɚɬ
s
1
ɢ
s
2
:
1
1
1
S
Q
s
T
s
T
dt
d
w
w
w
w
,
2
2
2
S
Q
s
T
s
T
dt
d
w
w
w
w
. (1)
Ⱥɤɬɢɜɧɵɦɢ ɫɢɥɚɦɢ ɹɜɥɹɸɬɫɹ
:
Ɋ
1
–
ɜɟɫ ɝɪɭɡɚ
Ⱥ
,
Ɋ
2
–
ɜɟɫ ɝɪɭɡɚ
ȼ
,
Ɋ
3
–
ɜɟɫ ɛɥɨɤɚ
D
,
Ɋ
4
–
ɜɟɫ ɛɥɨɤɚ
ȿ
,
Ɋ
5
–
ɜɟɫ ɛɥɨɤɚ
Ʉ
,
Ɋ
6
–
ɜɟɫ ɝɪɭɡɚ
L
.
Ɋɟɚɤɰɢɢ
ɫɜɹɡɟɣ ɭɱɢɬɵɜɚɬɶ ɧɟ ɫɥɟɞɭɟɬ
,
ɬɚɤ ɤɚɤ ɜɫɟ ɫɜɹɡɢ
,
ɧɚɥɨɠɟɧɧɵɟ ɧɚ ɫɢɫɬɟɦɭ
,
ɢɞɟɚɥɶɧɵ
(
ɧɚɤɥɨɧɧɵɟ ɩɥɨɫɤɨɫɬɢ ɢɞɟɚɥɶɧɨ ɝɥɚɞɤɢɟ
,
ɬɪɟɧɢɟ ɜ ɨɫɹɯ ɛɥɨɤɨɜ
ɨɬɫɭɬɫɬɜɭɟɬ
,
ɧɢɬɢ ɩɪɟɞɩɨɥɚɝɚɸɬɫɹ ɧɟɪɚɫɬɹɠɢɦɵɦɢ ɢ ɧɚɬɹɧɭɬɵɦɢ
).
Ⱦɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɨɛɨɛɳɟɧɧɵɯ ɫɢɥ
1
S
Q
ɢ
2
S
Q
ɞɚɞɢɦ ɝɪɭɡɚɦ
Ⱥ
ɢ
ȼ
ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ
ɜɨɡɦɨɠɧɵɟ
ɩɟɪɟɦɟɳɟɧɢɹ
G
s
1
ɢ
G
s
2
,
ɧɚɩɪɚɜɥɟɧɧɵɟ
ɩɚɪɚɥɥɟɥɶɧɨ ɥɢɧɢɹɦ ɧɚɢɛɨɥɶɲɟɝɨ ɫɤɚɬɚ ɧɚɤɥɨɧɧɵɯ ɩɥɨɫɤɨɫɬɟɣ ɜ ɫɬɨɪɨɧɭ
ɜɨɡɪɚɫɬɚɧɢɹ ɤɨɨɪɞɢɧɚɬ
s
1
ɢ
s
2
.
44
Ⱦɥɹ ɜɵɱɢɫɥɟɧɢɹ ɨɛɨɛɳɟɧɧɨɣ ɫɢɥɵ
1
S
Q
ɞɚɞɢɦ ɫɢɫɬɟɦɟ ɨɛɨɛɳɟɧɧɨɟ
ɜɨɡɦɨɠɧɨɟ ɩɟɪɟɦɟɳɟɧɢɟ
G
s
1
,
ɫɱɢɬɚɹ ɩɪɢ ɷɬɨɦ
G
s
2
ɪɚɜɧɵɦ ɧɭɥɸ
,
ɬ
.
ɟ
.
G
G
s
s
1
2
0
0
z
;
. (
ɗɬɨ ɨɫɭɳɟɫɬɜɢɦɨ
,
ɬɚɤ ɤɚɤ
s
1
ɢ
s
2
ɹɜɥɹɸɬɫɹ ɧɟɡɚɜɢɫɢɦɵɦɢ
ɨɛɨɛɳɟɧɧɵɦɢ ɤɨɨɪɞɢɧɚɬɚɦɢ
.)
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ
,
ɝɪɭɡ
ȼ
,
ɛɥɨɤ
ȿ
ɢ ɩɪɚɜɚɹ ɜɟɬɜɶ ɧɢɬɢ ɨɬ ɝɪɭɡɚ
ȼ
ɞɨ ɬɨɱɤɢ
N
ɧɚɯɨɞɹɬɫɹ ɜ ɩɨɤɨɟ
.
ɉɪɢ ɜɨɡɦɨɠɧɨɦ ɩɟɪɟɦɟɳɟɧɢɢ ɝɪɭɡɚ
Ⱥ
ɜɧɢɡ ɧɚ
G
s
1
,
ɜɜɢɞɭ ɧɟɪɚɫɬɹɠɢɦɨɫɬɢ
ɧɢɬɢ
,
ɬɨɱɤɚ
Ɇ
ɧɢɬɢ ɩɨɥɭɱɢɬ ɜɨɡɦɨɠɧɨɟ
ɩɟɪɟɦɟɳɟɧɢɟ
G
r
M
ɩɨ ɜɟɪɬɢɤɚɥɢ ɜɜɟɪɯ
,
ɪɚɜɧɨɟ ɩɨ ɦɨɞɭɥɸ
G
s
1
.
ɍɱɢɬɵɜɚɹ
,
ɱɬɨ ɬɨɱɤɚ
N
ɧɢɬɢ ɨɫɬɚɧɟɬɫɹ ɩɪɢ ɷɬɨɦ ɜ ɩɨɤɨɟ
,
ɨɩɪɟɞɟɥɢɦ ɜɨɡɦɨɠɧɨɟ
ɩɟɪɟɦɟɳɟɧɢɟ ɨɫɢ ɛɥɨɤɚ
G
r
O
5
(
ɪɢɫ
.
ɛ
),
ɪɚɜɧɨɟ ɩɨ ɦɨɞɭɥɸ ɩɨɥɨɜɢɧɟ ɦɨɞɭɥɹ
ɜɨɡɦɨɠɧɨɝɨ ɩɟɪɟɦɟɳɟɧɢɹ
G
r
M
,
ɬ
.
ɟ
.
2
2
1
5
s
r
r
M
O
G
G
G
. (2)
ȼɵɱɢɫɥɢɦ ɫɭɦɦɭ ɪɚɛɨɬ ɚɤɬɢɜɧɵɯ ɫɢɥ ɧɚ ɜɨɡɦɨɠɧɵɯ ɩɟɪɟɦɟɳɟɧɢɹɯ
ɬɨɱɟɤ
ɫɢɫɬɟɦɵ
,
ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ
ɨɛɨɛɳɟɧɧɨɦɭ
ɜɨɡɦɨɠɧɨɦɭ
ɩɟɪɟɦɟɳɟɧɢɸ
G
s
1
ɝɪɭɡɚ
Ⱥ
:
5
6
5
1
1
)
(
sin
O
r
P
P
s
P
A
G
DG
G
.
ɉɪɢɧɢɦɚɹ ɜɨ ɜɧɢɦɚɧɢɟ ɮɨɪɦɭɥɭ
(2),
ɧɚɯɨɞɢɦ
1
6
5
1
)
(
2
1
sin
s
P
P
P
A
G
D
G
»¼
º
«¬
ª
.
(3)
Ɋɚɛɨɬɚ ɫɢɥɵ ɬɹɠɟɫɬɢ
Ɋ
2
ɪɚɜɧɚ ɧɭɥɸ
,
ɬɚɤ ɤɚɤ
G
s
2
0
,
ɪɚɛɨɬɚ ɫɢɥ
ɬɹɠɟɫɬɢ
Ɋ
3
ɢ
Ɋ
4
ɪɚɜɧɚ ɧɭɥɸ
,
ɬɚɤ ɤɚɤ ɬɨɱɤɢ ɩɪɢɥɨɠɟɧɢɹ ɷɬɢɯ ɫɢɥ
ɧɟɩɨɞɜɢɠɧɵ
.
Ɉɛɨɛɳɟɧɧɨɣ ɫɢɥɨɣ
1
S
Q
ɹɜɥɹɟɬɫɹ ɤɨɷɮɮɢɰɢɟɧɬ
,
ɫɬɨɹɳɢɣ ɩɪɢ
ɨɛɨɛɳɟɧɧɨɦ ɜɨɡɦɨɠɧɨɦ ɩɟɪɟɦɟɳɟɧɢɢ ɜ ɭɪɚɜɧɟɧɢɢ
(3),
ɬ
.
ɟ
.
)
(
2
1
sin
6
5
1
1
P
P
P
Q
S
D
.
(4)
Ⱦɥɹ ɜɵɱɢɫɥɟɧɢɹ ɨɛɨɛɳɟɧɧɨɣ ɫɢɥɵ
2
S
Q
ɞɚɞɢɦ ɫɢɫɬɟɦɟ ɨɛɨɛɳɟɧɧɨɟ
ɜɨɡɦɨɠɧɨɟ ɩɟɪɟɦɟɳɟɧɢɟ
G
s
2
,
ɫɱɢɬɚɹ ɩɪɢ ɷɬɨɦ
G
s
1
ɪɚɜɧɵɦ ɧɭɥɸ
:
G
G
s
s
2
1
0
0
z
;
.
ɗɬɨ ɡɧɚɱɢɬ
,
ɱɬɨ ɝɪɭɡ
Ⱥ
,
ɛɥɨɤ
D
ɢ ɥɟɜɚɹ ɜɟɬɜɶ ɧɢɬɢ ɨɬ ɝɪɭɡɚ
Ⱥ
ɞɨ ɬɨɱɤɢ
Ɇ
ɧɢɬɢ ɧɚɯɨɞɹɬɫɹ ɜ ɩɨɤɨɟ
.
ɉɪɢ ɜɨɡɦɨɠɧɨɦ ɩɟɪɟɦɟɳɟɧɢɢ ɝɪɭɡɚ
ȼ
ɧɚ
G
s
2
ɜɧɢɡ
,
ɜɜɢɞɭ ɧɟɪɚɫɬɹɠɢɦɨɫɬɢ ɧɢɬɢ
,
ɬɨɱɤɚ
N
ɧɢɬɢ ɩɨɥɭɱɢɬ ɜɨɡɦɨɠɧɨɟ
ɩɟɪɟɦɟɳɟɧɢɟ
N
r
G
ɩɨ ɜɟɪɬɢɤɚɥɢ ɜɜɟɪɯ
,
ɪɚɜɧɨɟ ɜɟɥɢɱɢɧɟ ɦɨɞɭɥɸ
ɜɨɡɦɨɠɧɨɝɨ ɩɟɪɟɦɟɳɟɧɢɹ
G
s
2
.
ɍɱɢɬɵɜɚɹ
,
ɱɬɨ ɬɨɱɤɚ
Ɇ
ɧɢɬɢ ɨɫɬɚɟɬɫɹ ɩɪɢ
ɷɬɨɦ ɜ ɩɨɤɨɟ
,
ɧɚɯɨɞɢɦ
(
ɪɢɫ
.
ɜ
)
45
2
2
2
5
s
r
r
N
O
G
G
G
.
(5)
ȼɵɱɢɫɥɢɦ ɫɭɦɦɭ ɪɚɛɨɬ ɚɤɬɢɜɧɵɯ ɫɢɥ ɧɚ ɜɨɡɦɨɠɧɵɯ ɩɟɪɟɦɟɳɟɧɢɹɯ
ɬɨɱɟɤ
ɫɢɫɬɟɦɵ
,
ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ
ɨɛɨɛɳɟɧɧɨɦɭ
ɜɨɡɦɨɠɧɨɦɭ
ɩɟɪɟɦɟɳɟɧɢɸ
G
s
2
:
5
6
5
2
2
)
(
sin
O
r
P
P
s
P
A
G
EG
G
.
ɍɱɢɬɵɜɚɹ ɮɨɪɦɭɥɭ
(5),
ɢɦɟɟɦ
:
2
6
5
2
)
(
2
1
sin
s
P
P
P
A
G
E
G
»¼
º
«¬
ª
.
(6)
Ɋɚɛɨɬɚ ɫɢɥɵ ɬɹɠɟɫɬɢ
Ɋ
1
ɪɚɜɧɚ ɧɭɥɸ
,
ɬɚɤ ɤɚɤ
G
s
1
0
,
ɪɚɛɨɬɚ ɫɢɥ
ɬɹɠɟɫɬɢ
Ɋ
3
ɢ
Ɋ
4
ɪɚɜɧɚ ɧɭɥɸ
,
ɬɚɤ ɤɚɤ ɬɨɱɤɢ ɩɪɢɥɨɠɟɧɢɹ ɷɬɢɯ ɫɢɥ
ɧɟɩɨɞɜɢɠɧɵ
.
Ɉɛɨɛɳɟɧɧɨɣ ɫɢɥɨɣ
2
S
Q
ɹɜɥɹɟɬɫɹ ɤɨɷɮɮɢɰɢɟɧɬ
,
ɫɬɨɹɳɢɣ ɩɪɢ
ɨɛɨɛɳɟɧɧɨɦ ɜɨɡɦɨɠɧɨɦ ɩɟɪɟɦɟɳɟɧɢɢ ɜ ɭɪɚɜɧɟɧɢɢ
(6),
ɬ
.
ɟ
.
)
(
2
1
sin
6
5
2
2
P
P
P
Q
S
E
.
(7)
ɉɟɪɟɯɨɞɢɦ ɤ ɜɵɱɢɫɥɟɧɢɸ ɤɢɧɟɬɢɱɟɫɤɨɣ ɷɧɟɪɝɢɢ
Ɍ
ɦɚɬɟɪɢɚɥɶɧɨɣ
ɫɢɫɬɟɦɵ
,
ɫɨɫɬɨɹɳɟɣ ɢɡ ɲɟɫɬɢ ɦɚɫɫ
:
ɝɪɭɡɨɜ
Ⱥ
,
ȼ
ɢ
L
ɛɥɨɤɨɜ
D
,
ȿ
ɢ
Ʉ
:
T
T
T
T
T
T
T
( )
( )
( )
( )
( )
( )
1
2
3
4
5
6
.
(8)
Ƚɪɭɡɵ
Ⱥ
ɢ
ȼ
ɢɦɟɸɬ ɫɤɨɪɨɫɬɢ
v
A
ɢ
v
B
,
ɧɚɩɪɚɜɥɟɧɧɵɟ ɩɚɪɚɥɥɟɥɶɧɨ
ɥɢɧɢɹɦ ɧɚɢɛɨɥɶɲɟɝɨ ɫɤɚɬɚ ɧɚɤɥɨɧɧɵɯ ɩɥɨɫɤɨɫɬɟɣ
.
ɉɪɨɟɤɰɢɢ ɷɬɢɯ
ɫɤɨɪɨɫɬɟɣ ɧɚ ɨɫɢ
s
1
ɢ
s
2
ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ ɪɚɜɧɵ
s
1
ɢ
s
2
.
Ɉɛɨɡɧɚɱɢɦ ɪɚɞɢɭɫɵ
ɛɥɨɤɨɜ
D
,
ȿ
ɢ
Ʉ
ɱɟɪɟɡ
r
3
,
r
4
ɢ
r
5
.
ɉɪɢ ɷɬɨɦ ɭɝɥɨɜɵɟ ɫɤɨɪɨɫɬɢ ɛɥɨɤɨɜ
D
ɢ
ȿ
ɜɵɪɚɡɹɬɫɹ ɬɚɤ
:
M
3
1
3
s
r
,
M
4
2
4
s
r
.
(9)
ȼɜɢɞɭ ɧɟɪɚɫɬɹɠɢɦɨɫɬɢ ɧɢɬɢ ɫɤɨɪɨɫɬɶ
v
M
ɬɨɱɤɢ
Ɇ
ɧɢɬɢ ɪɚɜɧɚ ɩɨ
ɜɟɥɢɱɢɧɟ ɫɤɨɪɨɫɬɢ
v
A
ɝɪɭɡɚ
Ⱥ
,
ɬ
.
ɟ
.
v
s
Mx
1
.
Ⱥɧɚɥɨɝɢɱɧɨ
v
s
Nx
2
.
ɇɟɬɪɭɞɧɨ
,
ɜɨɫɩɨɥɶɡɨɜɚɜɲɢɫɶ ɪɢɫ
.
ɝ
)
,
ɧɚɣɬɢ ɫɤɨɪɨɫɬɶ ɨɫɢ
Ɉ
5
ɛɥɨɤɚ
Ʉ
,
ɫɨɜɟɪɲɚɸɳɟɝɨ ɩɥɨɫɤɨɟ ɞɜɢɠɟɧɢɟ
:
2
2
2
1
5
s
s
v
v
v
Nx
Mx
x
O
. (10)