ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 07.04.2021
Просмотров: 408
Скачиваний: 1
31
ɝɞɟ
R
ɢ
M
0
–
ɝɥɚɜɧɵɣ ɜɟɤɬɨɪ ɢ ɝɥɚɜɧɵɣ ɦɨɦɟɧɬ ɩɪɢɥɨɠɟɧɧɵɯ ɤ ɬɟɥɭ ɫɢɥ
;
Ɉ
–
ɩɪɨɢɡɜɨɥɶɧɚɹ ɬɨɱɤɚ ɬɟɥɚ
.
Ɋɚɛɨɬɚ ɫɢɥ
,
ɩɪɢɥɨɠɟɧɧɵɯ ɤ ɬɜɟɪɞɨɦɭ ɬɟɥɭ
,
ɜɪɚɳɚɸɳɟɦɭɫɹ ɜɨɤɪɭɝ ɨɫɢ
,
;
M
G
d
M
A
Z
³
2
1
12
M
M
M
d
M
A
Z
,
ɝɞɟ
M
Z
–
ɝɥɚɜɧɵɣ ɦɨɦɟɧɬ ɜɫɟɯ ɫɢɥ ɨɬɧɨɫɢɬɟɥɶɧɨ ɨɫɢ ɜɪɚɳɟɧɢɹ
Oz.
ɋɭɦɦɚ ɪɚɛɨɬ ɜɫɟɯ ɜɧɭɬɪɟɧɧɢɯ ɫɢɥ ɜ ɬɜɟɪɞɨɦ ɬɟɥɟ ɪɚɜɧɚ ɧɭɥɸ
.
Ɇɨɳɧɨɫɬɶ ɫɢɥɵ
,
ɩɪɢɥɨɠɟɧɧɨɣ ɤ ɬɨɱɤɟ
,
N
A
dt
F v
F v
F x
F y
F z
x
y
z
G
W
.
Ɇɨɳɧɨɫɬɶ ɫɢɥ
,
ɩɪɢɥɨɠɟɧɧɵɯ ɤ ɬɜɟɪɞɨɦɭ ɬɟɥɭ
,
Z
O
O
M
v
R
N
.
Ⱦɥɹ ɫɢɥ
,
ɩɪɢɥɨɠɟɧɧɵɯ ɤ ɬɜɟɪɞɨɦɭ ɬɟɥɭ
,
ɜɪɚɳɚɸɳɟɦɭɫɹ ɜɨɤɪɭɝ
ɧɟɩɨɞɜɢɠɧɨɣ ɨɫɢ
,
Z
Z
M
N
.
ȼ ɨɛɳɟɦ ɫɥɭɱɚɟ ɪɚɛɨɬɚ ɫɢɥɵ ɧɚ ɤɪɢɜɨɥɢɧɟɣɧɨɦ ɭɱɚɫɬɤɟ ɩɭɬɢ ɡɚɜɢɫɢɬ ɨɬ
ɮɨɪɦɵ ɤɪɢɜɨɣ
L
,
ɩɨ ɤɨɬɨɪɨɣ ɩɟɪɟɦɟɳɚɟɬɫɹ ɬɨɱɤɚ
.
ȿɫɥɢ ɫɢɥɵ
,
ɞɟɣɫɬɜɭɸɳɢɟ
ɧɚ ɬɨɱɤɭ
,
ɬɚɤɨɜɵ
,
ɱɬɨ
x
F
y
F
y
x
w
w
w
w
,
x
F
z
F
z
x
w
w
w
w
,
y
F
z
F
z
y
w
w
w
w
,
ɬɨ ɪɚɛɨɬɚ ɧɟ ɡɚɜɢɫɢɬ ɨɬ ɮɨɪɦɵ ɬɪɚɟɤɬɨɪɢɢ ɬɨɱɤɢ ɢ ɩɨɥɟ ɫɢɥ ɧɚɡɵɜɚɸɬ
ɩɨɬɟɧɰɢɚɥɶɧɵɦ
.
ȼ ɷɬɨɦ ɫɥɭɱɚɟ
d
ɉ
A
G
;
A
12
=
ɉ
1
–
ɉ
2
,
ɝɞɟ ɉ
(
x, y, z
) –
ɩɨɬɟɧɰɢɚɥɶɧɚɹ ɷɧɟɪɝɢɹ ɬɨɱɤɢ
;
ɉ
1
ɢ ɉ
2
–
ɡɧɚɱɟɧɢɹ ɉ
(
x, y, z
)
ɜ ɧɚɱɚɥɶɧɨɦ ɢ ɤɨɧɟɱɧɨɦ ɩɨɥɨɠɟɧɢɹɯ
ɬɨɱɤɢ
.
ɉɨɬɟɧɰɢɚɥɶɧɚɹ ɷɧɟɪɝɢɹ ɩɨɥɹ ɫɢɥɵ ɬɹɠɟɫɬɢ
const
P
ɉ
Zc
.
ȿɫɥɢ ɜɵɛɪɚɧɚ ɧɭɥɟɜɚɹ ɩɨɜɟɪɯɧɨɫɬɶ ɭɪɨɜɧɹ
,
ɬɨ ɩɨɥɭɱɢɦ
Ph
ɉ
r
,
ɝɞɟ
h
–
ɜɵɫɨɬɚ ɰɟɧɬɪɚ ɬɹɠɟɫɬɢ ɨɬɧɨɫɢɬɟɥɶɧɨ ɧɭɥɟɜɨɣ ɩɨɜɟɪɯɧɨɫɬɢ
,
ɩɪɢɱɟɦ ɡɧɚɤ
«
ɩɥɸɫ
»
ɢɦɟɟɬ ɦɟɫɬɨ ɜ ɫɥɭɱɚɟ
,
ɤɨɝɞɚ ɰɟɧɬɪ ɬɹɠɟɫɬɢ ɪɚɫɩɨɥɨɠɟɧ ɜɵɲɟ ɷɬɨɣ
ɩɨɜɟɪɯɧɨɫɬɢ
.
ɉɨɬɟɧɰɢɚɥɶɧɭɸ ɷɧɟɪɝɢɸ ɩɪɭɠɢɧɵ
(
ɥɢɧɟɣɧɨɣ ɢ ɫɩɢɪɚɥɶɧɨɣ
)
ɜɵɪɚɠɚɸɬ
ɮɨɪɦɭɥɨɣ
2
2
'
c
ɉ
,
ɝɞɟ ɞɥɹ ɥɢɧɟɣɧɨɣ ɩɪɭɠɢɧɵ
:
c
–
ɠɟɫɬɤɨɫɬɶ
,
ɪɚɜɧɚɹ ɜɟɥɢɱɢɧɟ ɫɢɥɵ
,
ɜɵɡɵɜɚɸɳɟɣ ɢɡɦɟɧɟɧɢɟ ɞɥɢɧɵ
ɩɪɭɠɢɧɵ ɧɚ ɟɞɢɧɢɰɭ ɞɥɢɧɵ
;
32
'
–
ɢɡɦɟɧɟɧɢɟ ɞɥɢɧɵ ɩɪɭɠɢɧɵ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɟɟ ɧɟɞɟɮɨɪɦɢɪɨɜɚɧɧɨɣ
ɞɥɢɧɨɣ
;
ɞɥɹ ɫɩɢɪɚɥɶɧɨɣ ɩɪɭɠɢɧɵ
:
c
–
ɠɟɫɬɤɨɫɬɶ
,
ɪɚɜɧɚɹ
ɜɟɥɢɱɢɧɟ ɦɨɦɟɧɬɚ ɫɢɥɵ
,
ɜɵɡɵɜɚɸɳɟɝɨ
ɡɚɤɪɭɱɢɜɚɧɢɟ ɩɪɭɠɢɧɵ ɧɚ
1
ɪɚɞɢɚɧ
;
'
–
ɭɝɨɥ ɡɚɤɪɭɱɢɜɚɧɢɹ ɨɬ ɧɟɞɟɮɨɪɦɢɪɨɜɚɧɧɨɝɨ ɫɨɫɬɨɹɧɢɹ
.
ɉɪɢɪɚɳɟɧɢɟ ɤɢɧɟɬɢɱɟɫɤɨɣ ɷɧɟɪɝɢɢ ɫɢɫɬɟɦɵ ɩɪɢ ɩɟɪɟɦɟɳɟɧɢɢ ɟɟ ɢɡ
ɨɞɧɨɝɨ ɩɨɥɨɠɟɧɢɹ ɜ ɞɪɭɝɨɟ ɪɚɜɧɨ ɫɭɦɦɟ ɪɚɛɨɬ
,
ɩɪɨɢɡɜɟɞɟɧɧɵɯ ɧɚ ɷɬɨɦ
ɩɟɪɟɦɟɳɟɧɢɢ ɜɫɟɦɢ ɫɢɥɚɦɢ
,
ɩɪɢɥɨɠɟɧɧɵɦɢ ɤ ɫɢɫɬɟɦɟ
,
ɬ
.
ɟ
.
T
2
– T
1
= A
12
.
ȿɫɥɢ ɫɢɫɬɟɦɚ ɧɟɢɡɦɟɧɹɟɦɚɹ
,
ɬɨ
)
(
12
1
2
e
A
T
T
,
ɝɞɟ
)
(
12
e
A
–
ɫɭɦɦɚ ɪɚɛɨɬ ɜɧɟɲɧɢɯ ɫɢɥ
.
ɉɪɨɢɡɜɨɞɧɚɹ ɨɬ ɤɢɧɟɬɢɱɟɫɤɨɣ ɷɧɟɪɝɢɢ ɫɢɫɬɟɦɵ ɪɚɜɧɚ ɫɭɦɦɟ
ɦɨɳɧɨɫɬɟɣ ɜɫɟɯ ɫɢɥ
,
ɞɟɣɫɬɜɭɸɳɢɯ ɧɚ ɷɬɭ ɫɢɫɬɟɦɭ
,
ɬ
.
ɟ
.
N
dt
dT
.
ȿɫɥɢ ɫɢɫɬɟɦɚ ɞɜɢɠɟɬɫɹ ɜ ɩɨɬɟɧɰɢɚɥɶɧɨɦ ɫɢɥɨɜɨɦ ɩɨɥɟ
,
ɬɨ ɩɨɥɧɚɹ
ɦɟɯɚɧɢɱɟɫɤɚɹ ɷɧɟɪɝɢɹ
,
ɪɚɜɧɚɹ ɫɭɦɦɟ ɤɢɧɟɬɢɱɟɫɤɨɣ ɢ ɩɨɬɟɧɰɢɚɥɶɧɨɣ
ɷɧɟɪɝɢɣ
,
ɨɫɬɚɟɬɫɹ ɩɨɫɬɨɹɧɧɨɣ
,
ɬ
.
ɟ
.
Ɍ
+
ɉ
= const.
Ɂɚɞɚɱɚ ʋ
1.
Ƚɪɭɡ Ɇ ɦɚɫɫɨɣ
m
ɩɨɦɟɳɟɧ ɧɚ ɧɟɝɥɚɞɤɭɸ ɧɚɤɥɨɧɧɭɸ
ɩɥɨɫɤɨɫɬɶ
,
ɨɛɪɚɡɭɸɳɭɸ
ɫ
ɝɨɪɢɡɨɧɬɨɦ ɭɝɨɥ
D
,
ɢ ɩɪɢɤɪɟɩɥɟɧ
ɤ ɤɨɧɰɭ ɩɪɭɠɢɧɵ ɫ ɠɟɫɬɤɨɫɬɶɸ
ɫ
,
ɞɪɭɝɨɣ ɤɨɧɟɰ ɤɨɬɨɪɨɣ ɡɚɤɪɟɩɥɟɧ
ɧɟɩɨɞɜɢɠɧɨ
.
Ɉɩɪɟɞɟɥɢɬɶ
ɦɚɤɫɢɦɚɥɶɧɨɟ
ɪɚɫɬɹɠɟɧɢɟ
S
ɩɪɭɠɢɧɵ
,
ɟɫɥɢ
ɜ
ɧɚɱɚɥɶɧɵɣ
ɦɨɦɟɧɬ
ɩɪɭɠɢɧɚ
ɛɵɥɚ
ɧɟɞɟɮɨɪɦɢɪɨɜɚɧɚ
,
ɚ ɝɪɭɡ ɨɬɩɭɳɟɧ
ɛɟɡ
ɧɚɱɚɥɶɧɨɣ
ɫɤɨɪɨɫɬɢ
.
Ʉɨɷɮɮɢɰɢɟɧɬ ɬɪɟɧɢɹ ɬɟɥɚ ɨ
ɩɥɨɫɤɨɫɬɶ
ɪɚɜɟɧ
f,
ɩɪɢɱɟɦ
.
D
tg
f
Ɋɟɲɟɧɢɟ
.
ɂɦɟɟɦ
:
ɧɚ ɝɪɭɡ Ɇ ɞɟɣɫɬɜɭɟɬ ɜɟɫ
P
,
ɭɩɪɭɝɚɹ ɫɢɥɚ
F
,
ɧɨɪɦɚɥɶɧɚɹ ɪɟɚɤɰɢɹ ɩɥɨɫɤɨɫɬɢ
N
ɢ ɫɢɥɚ ɬɪɟɧɢɹ
ɬɪ
F
,
ɧɚɩɪɚɜɥɟɧɧɚɹ ɤɚɤ
F
.
ɂɡɦɟɧɟɧɢɟ ɤɢɧɟɬɢɱɟɫɤɨɣ ɷɧɟɪɝɢɢ ɪɚɜɧɨ ɪɚɛɨɬɟ ɫɢɥ
,
ɩɪɢɥɨɠɟɧɧɵɯ ɤ
ɫɢɫɬɟɦɟ
:
¦
)
(
12
1
2
F
A
T
T
.
Ɍɚɤ
ɤɚɤ
,
0
2
1
v
v
ɬɨ
0
2
1
T
T
,
ɫɥɟɞɨɜɚɬɟɥɶɧɨ
,
,
0
12
A
ɬ
.
ɟ
.
0
)
(
)
(
)
(
)
(
12
12
12
12
12
N
A
F
A
F
A
P
A
A
ɬɪ
.
Ɂɞɟɫɶ
D
cos
fP
F
ɬɪ
,
cx
F
,
.
mg
P
33
Ⱦɚɥɟɟ ɧɚɣɞɟɦ
;
sin
)
(
12
D
PS
P
A
;
cos
)
(
12
D
fPS
S
F
F
A
ɬɪ
ɬɪ
³
S
cS
cxdx
F
A
0
2
12
2
)
(
;
0
)
(
12
N
A
,
ɬɚɤ ɤɚɤ ɩɟɪɟɦɟɳɟɧɢɟ ɝɪɭɡɚ
ɩɟɪɩɟɧɞɢɤɭɥɹɪɧɨ ɧɨɪɦɚɥɶɧɨɣ ɫɢɥɟ ɪɟɚɤɰɢɢ ɩɥɨɫɤɨɫɬɢ
.
ɋɥɟɞɨɜɚɬɟɥɶɧɨ
,
,
0
2
cos
sin
2
cS
PSf
PS
D
D
ɨɬɤɭɞɚ
.
)
cos
(sin
2
c
f
mg
S
D
D
Ɂɚɞɚɱɚ ʋ
2.
Ⱥɪɤɭɲɚ Ⱥ
.
ɂ
. «
Ɋɭɤɨɜɨɞɫɬɜɨ ɤ ɪɟɲɟɧɢɸ ɡɚɞɚɱ ɩɨ
ɬɟɨɪɟɬɢɱɟɫɤɨɣ ɦɟɯɚɧɢɤɟ
»,
Ɇɨɫɤɜɚ
,
ȼɵɫɲɚɹ ɲɤɨɥɚ
, 1999.
Ɇɚɲɢɧɢɫɬ ɬɟɩɥɨɜɨɡɚ ɨɬɤɥɸɱɚɟɬ
ɞɜɢɝɚɬɟɥɶ ɢ ɧɚɱɢɧɚɟɬ ɬɨɪɦɨɡɢɬɶ
ɜ ɦɨɦɟɧɬ
,
ɤɨɝɞɚ ɬɟɩɥɨɜɨɡ ɢɦɟɟɬ
ɫɤɨɪɨɫɬɶ
90
ɤɦ
/
ɱ
.
ɉɪɨɣɞɹ ɤɚɤɨɣ
ɩɭɬɶ
,
ɬɟɩɥɨɜɨɡ ɨɫɬɚɧɨɜɢɬɫɹ
,
ɟɫɥɢ
ɫɢɥɚ ɬɨɪɦɨɠɟɧɢɹ ɩɨɫɬɨɹɧɧɚ ɢ
ɫɨɫɬɚɜɥɹɟɬ
0,12
ɟɝɨ
ɜɟɫɚ
,
ɚ
ɞɜɢɠɟɧɢɟ
ɩɪɨɢɫɯɨɞɢɬ
ɩɨ
ɝɨɪɢɡɨɧɬɚɥɶɧɨɦɭ
ɢ
ɪɨɜɧɨɦɭ
ɭɱɚɫɬɤɭ ɞɨɪɨɝɢ
?
Ɋɟɲɟɧɢɟ
.
1.
Ⱦɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɬɨɪɦɨɡɧɨɝɨ ɩɭɬɢ
S
ɩɪɢɦɟɧɢɦ ɬɟɨɪɟɦɭ ɨɛ
ɢɡɦɟɧɟɧɢɢ ɤɢɧɟɬɢɱɟɫɤɨɣ ɷɧɟɪɝɢɢ
¦
)
(
10
0
1
F
A
T
T
.
ȼ ɞɚɧɧɨɦ ɫɥɭɱɚɟ
V
1
=0,
GS
FS
FS
F
A
ɬɪ
12
.
0
)
cos(
)
(
D
(
ɭɝɨɥ
D
ɦɟɠɞɭ ɧɚɩɪɚɜɥɟɧɢɟɦ ɫɢɥɵ
F
ɢ
ɧɚɩɪɚɜɥɟɧɢɟɦ ɩɟɪɟɦɟɳɟɧɢɹ ɪɚɜɟɧ
180
q
),
ɚ ɪɚɛɨɬɵ ɫɢɥ
G
ɢ
n
R
ɪɚɜɧɵ ɧɭɥɸ
(
ɷɬɢ ɫɢɥɵ ɞɟɣɫɬɜɭɸɬ ɩɟɪɩɟɧɞɢɤɭɥɹɪɧɨ ɤ ɧɚɩɪɚɜɥɟɧɢɸ ɩɟɪɟɦɟɳɟɧɢɹ
),
ɩɨɷɬɨɦɭ
Fs
mV
2
2
0
.
2.
Ɋɟɲɚɟɦ ɷɬɨ ɭɪɚɜɧɟɧɢɟ ɨɬɧɨɫɢɬɟɥɶɧɨ
S:
g
V
F
mV
S
12
,
0
2
2
2
0
2
0
(
F
=0,12
G
=0,12
mg
).
ɉɨɫɥɟ
ɩɨɞɫɬɚɧɨɜɤɢ
ɜ
ɷɬɭ
ɮɨɪɦɭɥɭ
ɱɢɫɥɨɜɵɯ
ɡɧɚɱɟɧɢɣ
2
25
265
2 0,12 9,81
S
ɦ
.
Ɂɚɞɚɱɚ ʋ
3.
Ⱥɪɤɭɲɚ Ⱥ
.
ɂ
. «
Ɋɭɤɨɜɨɞɫɬɜɨ ɤ ɪɟɲɟɧɢɸ ɡɚɞɚɱ ɩɨ
ɬɟɨɪɟɬɢɱɟɫɤɨɣ ɦɟɯɚɧɢɤɟ
»,
Ɇɨɫɤɜɚ
,
ȼɵɫɲɚɹ ɲɤɨɥɚ
, 1999.
34
Ɂɚ
500
ɦ ɞɨ ɫɬɚɧɰɢɢ
,
ɪɚɫɩɨɥɨɠɟɧɧɨɣ ɧɚ ɩɪɢɝɨɪɤɟ ɜɵɫɨɬɨɣ
2
ɦ
,
ɦɚɲɢɧɢɫɬ ɩɨɟɡɞɚ
,
ɢɞɭɳɟɝɨ ɫɨ ɫɤɨɪɨɫɬɶɸ
12
ɦ
/
ɫ
,
ɧɚɱɢɧɚɟɬ ɬɨɪɦɨɡɢɬɶ
.
Ʉɚɤ
ɜɟɥɢɤɨ
ɞɨɥɠɧɨ
ɛɵɬɶ
ɫɨɩɪɨɬɢɜɥɟɧɢɟ
ɨɬ
ɬɨɪɦɨɠɟɧɢɹ
,
ɫɱɢɬɚɟɦɨɟ
ɩɨɫɬɨɹɧɧɵɦ
,
ɱɬɨɛɵ ɩɨɟɡɞ ɨɫɬɚɧɨɜɢɥɫɹ ɭ ɫɬɚɧɰɢɢ
,
ɟɫɥɢ ɦɚɫɫɚ ɩɨɟɡɞɚ ɪɚɜɧɚ
10
6
ɤɝ
,
ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɬɪɟɧɢɹ
19600
ɇ
.
Ɋɟɲɟɧɢɟ
.
1.
Ɋɟɲɚɟɦ ɡɚɞɚɱɭ
,
ɢɫɩɨɥɶɡɭɹ
ɬɟɨɪɟɦɭ
ɨɛ
ɢɡɦɟɧɟɧɢɢ
ɤɢɧɟɬɢɱɟɫɤɨɣ
ɷɧɟɪɝɢɢ
¦
)
(
10
0
1
F
A
T
T
,
ɬɚɤ ɤɚɤ ɜ
ɭɫɥɨɜɢɢ ɡɚɞɚɱɢ ɡɚɞɚɧɨ ɧɟ ɜɪɟɦɹ
ɬɨɪɦɨɠɟɧɢɹ
,
ɚ ɬɨɪɦɨɡɧɨɣ ɩɭɬɶ
S
= 500
ɦ
.
2.
ɉɨɟɡɞ
ɞɜɢɠɟɬɫɹ
ɩɨɫɬɭɩɚɬɟɥɶɧɨ
,
ɩɨɷɬɨɦɭ
ɞɨɫɬɚɬɨɱɧɨ
ɪɚɫɫɦɨɬɪɟɬɶ
ɞɜɢɠɟɧɢɟ ɟɝɨ ɰɟɧɬɪɚ ɬɹɠɟɫɬɢ
ɋ
.
ɉɪɢɥɨɠɢɦ ɤ ɬɨɱɤɟ ɋ ɜɫɟ ɞɟɣɫɬɜɭɸɳɢɟ ɫɢɥɵ
.
ȼɟɫ ɩɨɟɡɞɚ
G
ɪɚɫɤɥɚɞɵɜɚɟɦ ɧɚ ɞɜɟ ɫɨɫɬɚɜɥɹɸɳɢɟ
1
G
ɢ
2
G
.
ɇɚ ɩɨɟɡɞ ɜ
ɫɬɨɪɨɧɭ
,
ɩɪɨɬɢɜɨɩɨɥɨɠɧɭɸ
ɟɝɨ
ɞɜɢɠɟɧɢɸ
,
ɞɟɣɫɬɜɭɸɬ
ɬɪɢ
ɫɢɥɵ
:
ɫɨɫɬɚɜɥɹɸɳɚɹ ɜɟɫɚ
2
G
,
ɫɢɥɚ ɬɪɟɧɢɹ
R
ɢ ɢɫɤɨɦɚɹ ɫɢɥɚ ɬɨɪɦɨɠɟɧɢɹ
F
.
3.
Ɋɚɜɧɨɞɟɣɫɬɜɭɸɳɚɹ ɷɬɢɯ ɫɢɥ ɪɚɜɧɚ ɢɯ ɫɭɦɦɟ
(F+R+G
2
)
,
ɧɚɩɪɚɜɥɟɧɢɟ
ɩɪɨɬɢɜɨɩɨɥɨɠɧɨ ɫɤɨɪɨɫɬɢ
,
ɚ ɨɬɪɢɰɚɬɟɥɶɧɚɹ ɪɚɛɨɬɚ ɫɢɥ ɫɨɩɪɨɬɢɜɥɟɧɢɹ
ɜɵɪɚɠɚɟɬɫɹ ɮɨɪɦɭɥɨɣ
Ⱥ
10
= –(F+R+G
2
)S.
4.
Ɋɚɛɨɬɚ
Ⱥ
10
ɪɚɜɧɚ ɢɡɦɟɧɟɧɢɸ ɤɢɧɟɬɢɱɟɫɤɨɣ ɷɧɟɪɝɢɢ ɩɨɟɡɞɚ
,
ɧɨ ɬɚɤ ɤɚɤ
ɤɨɧɟɱɧɚɹ ɫɤɨɪɨɫɬɶ ɩɨɟɡɞɚ
V
1
=0,
ɬɨ
2
2
0
2
mV
S
G
R
F
.
ɂɡ
ɩɨɫɥɟɞɧɟɝɨ
ɭɪɚɜɧɟɧɢɹ
ɦɨɠɧɨ
ɧɚɣɬɢ
ɫɢɥɭ
ɬɨɪɦɨɠɟɧɢɹ
F
:
2
2
0
2
G
R
S
mV
F
.
5.
ɇɨ
ɩɪɟɞɜɚɪɢɬɟɥɶɧɨ
ɧɭɠɧɨ
ɨɩɪɟɞɟɥɢɬɶ
ɫɨɫɬɚɜɥɹɸɳɭɸ
ɜɟɫɚ
G
2
:
S
h
G
G
G
)
sin(
2
D
.
35
ɉɨɞɫɬɚɜɢɜ ɩɨɥɭɱɟɧɧɨɟ ɡɧɚɱɟɧɢɟ
G
2
ɜ ɮɨɪɦɭɥɭ ɞɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɫɢɥɵ
F
,
ɩɨɥɭɱɢɦ
S
h
G
R
S
mV
F
2
2
0
.
Ɂɚɬɟɦ ɜɵɱɢɫɥɹɟɦ ɜɟɥɢɱɢɧɭ ɫɢɥɵ
F
,
ɭɱɢɬɵɜɚɹ
,
ɱɬɨ
G=mg
,
ɇ
S
mgh
R
S
mV
F
85100
500
2
81
,
9
10
19600
500
2
12
10
2
6
2
6
2
0
.
§11.
ɍɪɚɜɧɟɧɢɹ Ʌɚɝɪɚɧɠɚ ɜɬɨɪɨɝɨ ɪɨɞɚ
Ⱦɥɹ ɫɢɫɬɟɦɵ ɫ ɝɨɥɨɧɨɦɧɵɦɢ ɢɞɟɚɥɶɧɵɦɢ ɢ ɭɞɟɪɠɢɜɚɸɳɢɦɢ ɫɜɹɡɹɦɢ
ɭɪɚɜɧɟɧɢɹ Ʌɚɝɪɚɧɠɚ ɢɦɟɸɬ ɜɢɞ
[1], [5]
j
j
j
Q
q
T
q
T
dt
d
w
w
¸
¸
¹
·
¨
¨
©
§
w
w
(
j
= 1, 2, ... ,
s
),
ɝɞɟ
q
1
, q
2
,..., q
S
–
ɨɛɨɛɳɟɧɧɵɟ ɤɨɨɪɞɢɧɚɬɵ ɫɢɫɬɟɦɵ
;
s
–
ɱɢɫɥɨ ɫɬɟɩɟɧɟɣ ɫɜɨɛɨɞɵ ɫɢɫɬɟɦɵ
;
,
1
q
,
2
q
…,
S
q
–
ɨɛɨɛɳɟɧɧɵɟ ɫɤɨɪɨɫɬɢ
;
Ɍ
–
ɤɢɧɟɬɢɱɟɫɤɚɹ ɷɧɟɪɝɢɹ ɫɢɫɬɟɦɵ
;
Q
1
, Q
2
, ..., Q
S
–
ɨɛɨɛɳɟɧɧɵɟ ɫɢɥɵ
.
Ⱦɥɹ ɫɢɫɬɟɦ
,
ɞɜɢɠɭɳɢɯɫɹ ɜ ɩɨɬɟɧɰɢɚɥɶɧɨɦ ɫɢɥɨɜɨɦ ɩɨɥɟ
,
ɭɪɚɜɧɟɧɢɹ
Ʌɚɝɪɚɧɠɚ ɛɭɞɭɬ
0
w
w
¸
¸
¹
·
¨
¨
©
§
w
w
j
j
q
L
q
L
dt
d
,
ɝɞɟ
L = T –
ɉ
–
ɮɭɧɤɰɢɹ Ʌɚɝɪɚɧɠɚ
.
Ⱦɥɹ ɫɨɫɬɚɜɥɟɧɢɹ ɭɪɚɜɧɟɧɢɣ Ʌɚɝɪɚɧɠɚ ɫɥɟɞɭɟɬ
:
x
ɭɫɬɚɧɨɜɢɬɶ
ɱɢɫɥɨ
ɫɬɟɩɟɧɟɣ
ɫɜɨɛɨɞɵ
ɢ
ɜɵɛɪɚɬɶ
ɨɛɨɛɳɟɧɧɵɟ
ɤɨɨɪɞɢɧɚɬɵ
;
x
ɩɪɟɞɩɨɥɨɠɢɜ
,
ɱɬɨ ɫɢɫɬɟɦɚ ɞɜɢɠɟɬɫɹ ɬɚɤ
,
ɱɬɨ ɜɫɟ ɨɛɨɛɳɟɧɧɵɟ
ɤɨɨɪɞɢɧɚɬɵ ɭɜɟɥɢɱɢɜɚɸɬɫɹ
,
ɫɨɫɬɚɜɢɬɶ ɜɵɪɚɠɟɧɢɹ ɞɥɹ ɤɢɧɟɬɢɱɟɫɤɨɣ
ɷɧɟɪɝɢɢ ɫɢɫɬɟɦɵ
,
ɩɪɢ ɷɬɨɦ ɜɫɟ ɩɟɪɟɦɟɧɧɵɟ ɜɟɥɢɱɢɧɵ
,
ɜɯɨɞɹɳɢɟ ɜ
Ɍ
,
ɞɨɥɠɧɵ ɛɵɬɶ ɜɵɪɚɠɟɧɵ ɱɟɪɟɡ ɨɛɨɛɳɟɧɧɵɟ ɤɨɨɪɞɢɧɚɬɵ ɢ ɨɛɨɛɳɟɧɧɵɟ
ɫɤɨɪɨɫɬɢ
,
ɬ
.
ɟ
.
)
;
,...,
,
;
,...,
,
(
2
1
2
1
t
q
q
q
q
q
q
T
T
S
S
(
ɜ ɫɥɭɱɚɟ ɫɬɚɰɢɨɧɚɪɧɵɯ ɫɜɹɡɟɣ ɜɪɟɦɹ
t
ɧɟ ɜɯɨɞɢɬ ɜ ɜɵɪɚɠɟɧɢɟ
T
);