Файл: Лекции по теоретической метрологии.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.10.2023

Просмотров: 338

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
печати фотографий, от бижутерии – уровня качества бриллиантов. Всем известны отличающиеся по цене и емкости однотипные электрические батарейки, матрицы CD или DVD. Успешное прохождение контроля всего лишь гарантирует, что уровень качества не ниже установленного в технической документации. При этом набор требований, зафиксированных в документации, не обязательно соответствует высокому, а тем более, наивысшему уровню качества.

МОДУЛЬ 2. ШКАЛЫ И ПРИМЕНЕНИЕ ИХ В МЕТРОЛОГИИ



Оценку любого свойства некоторого объекта можно рассматривать как результат измерения качества данного свойства. Поэтому измерения в самом широком смысле термина являются объектом изучения и прикладным инструментом квалиметрии. Квалиметрия (переводится как "измерение качества") – область научных знаний, в рамках которой исследуются проблемы количественной оценки качества продукции. В соответствии с ГОСТ 15467-79 квалиметрия – это научная область, объединяющая количественные методы оценки качества, используемые для обоснования решений, принимаемых при управлении качеством продукции и стандартизации. Предметом квалиметрии является качество объектов с точки зрения возможностей его описания и количественного выражения.

Поскольку качество объекта представляет собой совокупность всех его свойств, оценивание качества объекта всегда начинается с количественной оценки его отдельных свойств. При этом под оценкой свойства объекта подразумевается определение местоположения данного свойства на определенной оценочной шкале.В квалиметрии принято различать следующие виды шкал:

  • шкала наименований (номинационная или номинальная шкала);

  • шкала порядка (ординальная или ранговая шкала);

  • шкала интервалов (интервальная шкала);

  • шкала отношений.

Иногда к этим шкалам добавляют еще «абсолютную» шкалу.

Все перечисленные виды шкал (кроме шкалы наименований) предназначены для сопоставления уровней интенсивности однотипного свойства, характеризующего один объект или некоторое множество объектов. Это соответствует исходному смыслу слова шкала (по латыни skala – лестница), определяемому как последовательность чисел или величин, расположенных в восходящем или нисходящем порядке.

Исходным материалом для построения всех шкал является «шкала наименований», поскольку без идентификации свойства нельзя построить шкалу его интенсивности. В бытовом плане шкалами наименований являются шкала фамилий (можно вместе с инициалами или именем и отчеством), шкала личных номеров в документах, адреса, номера экзаменационных билетов, номера ссылок на литературные источники. Видно, что такая шкала может состоять из любых знаков (числа, наименования, другие условные обозначения). Использование номеров не означает, что мы имеем дело с количественными оценками, напротив, любые цифры или числа такой шкалы – не более чем кодовые знаки. Всем понятно, что литературный источник 7 в списке литературы не лучше (толще, важнее, достовернее...) и не хуже, чем источник 8, хотя стоит перед ним. Они просто перечислены по алфавиту или в порядке упоминания в книге, статье.

Шкала наименований позволяет составлять классификации, идентифицировать и различать объекты. Если поименованное свойство не имеет такой характеристики как интенсивность (например, фамилия субъекта), все-таки можно хотя бы набирать статистику на каждый из идентифицируемых объектов (Ковалевых среди телефонных абонентов обычно больше, чем Гиацинтовых или Аллегровых).

Из сказанного ясно, что «шкала наименований» представляет собой не одну шкалу, объединяющую множество однотипных объектов, а скорее множество разнотипных шкал совершенно независимых или пересекающихся (рисунок 2.1). Например, шкалы личных имен, шкалы наименований профессий или специальностей. В метрологии используют шкалы наименований погрешностей: погрешности систематические и случайные, погрешности инструментальные, методические, из-за отличия условий измерения от нормальных, субъективные. Эти шкалы пересекаются между собой (например, инструментальная систематическая погрешность), поскольку обе они являются шкалами наименований погрешностей. Однако эти шкалы можно считать независимыми по отношению к шкалам наименований средств измерений или методов измерений.



Любая шкала наименований может рассматриваться как классификация однотипных объектов по некоторому основанию (классификационному признаку). Например, если отнести к однотипным объектам свойства, определяемые как физические величины, можно представить шкалу наименований в виде размерностей физических величин (рисунок 2.2).



Для того чтобы представить «шкалу наименований» в виде, приближенном к «лестнице» воспользуемся искусственным приемом ее построения в двухкоординатной системе, где по оси абсцисс будем отмечать рассматриваемые свойства, а по оси ординат – отображающие их символы (рисунок 2.3). Следует особо отметить, что последовательность свойств и расстояния между ними на шкале абсцисс не несут никакого масштабного содержания. То же следует сказать и относительно оси ординат – числа в номерах символов, равно как и алфавитная последовательность букв, никак не характеризуют интенсивность отображаемых на эту ось свойств. Дополнительным подтверждением служит отсутствие стрелок на осях построенной системы координат.

Используемые в метрологии шкалы наименований включают наименования физических величин (собственно наименования величин, размерности величин), наименования единиц физических величин (собственно наименования единиц, условные обозначения национальные и международные), наименования средств, видов и методов измерений, погрешностей измерений и их составляющих и др.


В измерениях нефизических величин используют наименования самих величин, единиц измерений величин и множество других наименований. Встречаются наименования единиц измерений некоторых объектов достаточно неожиданные, например, пара брюк, столовый прибор, коробка конфет, чайный сервиз, печатный лист, директория, файл



В отличие от шкалы наименований, шкала порядка устанавливает фиксированный порядок расположения объектов в соответствии с уровнем интенсивности рассматриваемого свойства. Такие шкалы широко применяются при определении в ходе соревнований мест команд или спортсменов, рейтингов деятелей искусства или политиков (рисунок 2.4).




Всем учащимся известны балльные оценки знаний на экзаменах, которые тоже являются фиксированными ступенями шкалы порядка. Простым примером реализации такой шкалы является построенная по росту группа людей, где каждый последующий ниже всех предыдущих. В бытовом плане всем известны деления по рангам, сортам, разрядам. Шкалы порядка используют и при измерениях уровня значимости объектов, например при установлении приоритетов планируемых работ, при выборе вариантов отдыха.

Можно отметить две существенные особенности шкалы порядка:

  • не закономерные (какие сложились) интервалы между соседними ступенями шкалы;

  • инвариантность объектов к используемым оценочным единицам и к добавлению константы.

Мы можем измерять рост людей своей пядью или пядью флангового (левого или правого, а также в любых других единицах) – порядок в группе останется неизменным. Мы можем выстроить всех босиком или поставить на одинаковые платформы-подставки, можем построить группу в неглубоком бассейне по высоте над уровнем воды – порядок сохранится. Шкала порядка позволяет не только сравнивать объекты, но и делать выводы об их упорядоченном расположении (всегда можно сказать, кто за кем, хотя нельзя определить на сколько отстает).

Можно привести такие примеры использования шкал порядка в метрологии, как шкалы твердости, ранжированные классы точности приборов (0, 1 и 2), разряды эталонных средств измерений (1, 2, 3 и т.д.), упорядоченные по возрастанию или по убыванию ряды результатов измерений или отклонений от базового значения и т.д.

Шкалу интервалов иногда называют шкалой равных или равномерных интервалов. Правильнее говорить о шкале закономерных интервалов (они могут быть построены не только равномерно, но и прогрессивно, экспоненциально, логарифмически). Принципиальное отличие от предыдущей шкалы в том, что положение выбранной точки на любой ступени шкалы интервалов жестко определено и соотношения координат точек шкалы поддаются расчету в соответствии с закономерностью построения шкалы. Построение шкалы равномерных интервалов как отображение интенсивности свойства (ось абсцисс) на ось ординат с пропорциональной оценкой уровня интенсивности свойства показано на рисунке 2.5.





Недостатком такой шкалы является неопределенность ее начала, которое устанавливают условно. Такой условностью на шкалах времени являются: моменты начала суток, отличающиеся в разных часовых поясах, моменты начала летоисчисления (2000 год от рождества Христова одновременно приходится на 5761 год по иудейскому календарю).

Тем не менее, в сутках у всех 24 часа, а в году 365 суток, если год не високосный. Примеры шкал интервалов в метрологии: шкала времени, шкала разности потенциалов, температурная шкала Цельсия (а также шкалы Реомюра, Фаренгейта).

Шкала отношений строится аналогично шкале интервалов, но имеет фиксированный ноль. Пример построения шкалы отношений на базе шкалы равномерных интервалов показан на рисунке 2.6.



Такая шкала полностью соответствует математической шкале чисел по определенности ступеней и возможностям оперирования элементами шкалы. Шкалы большинства физических величин (длина, масса, сила, давление, скорость и др.) являются шкалами отношений.

Поскольку при измерении физических величин мы стремимся представить измеряемую величину в виде числа, очевидно предпочтение тем величинам, которые можно с достаточной строгостью отобразить на наиболее мощные шкалы (интервалов и отношений). Из сопоставления рассмотренных шкал следует также, что шкала интервалов после установления на ней фиксированного ноля (сколь угодно условного) трансформируется в шкалу отношений.

Сводные сведения о шкалах представлены в таблице 2.1.

«Шкала наименований» при всей условности ее «шкального» характера включена в таблицу, поскольку она, как было отмечено ранее, является исходной для построения всех остальных шкал. Шкалы помещены в таблицу в соответствии с их информационной мощностью по возрастанию сверху вниз. Каждая из шкал, расположенная ниже других, вбирает в себя свойства всех предыдущих.

Что касается не включенной в таблицу «абсолютной» шкалы, по сути, она является частным случаем шкалы отношений, но кроме фиксированной нулевой точки («естественного нуля») имеет еще и «естественную единицу». Примерами таких шкал являются шкала количества целочисленных объектов, шкала коэффициента полезного действия, шкала относительной влажности и другие им подобные.