ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 06.11.2023
Просмотров: 238
Скачиваний: 4
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Фазовая диаграмма индивидуальных углеводородов ограничивается критической точкой С (рис. 11). Для однокомпонентных систем эта точка определяется наивысшими значениями давления и температуры, при которых ещё могут существовать две фазы одновременно.
И
Рис. 11. Фазовая диаграмма индивидуальных углеводородов
з рисунка 11 следует, что путём соответствующих изменений давления и температуры углеводороды можно перевести из парообразного состояния в жидкое, минуя двухфазную область. Газ, характеризующийся параметрами точки А (рис. 11), можно изобарически нагреть до температуры точки В, а затем, повысив давление в системе при постоянной температуре, перевести вещество в область точки D, расположенную выше критической точки С, и далее в область точки Е. Свойства системы при этом изменяются непрерывно, и разделения углеводорода на фазы не произойдёт. При дальнейшем охлаждении системы (от точки D до точки Е), а затем при снижении давления до точки F вещество приобретёт свойства жидкости, минуя область двухфазного состояния.
4.2. Фазовые состояния углеводородных смесей
Значительно сложнее закономерности фазовых переходов двух- и многокомпонентных систем. С появлением в системе двух и более компонентов в закономерностях фазовых изменений возникают особенности, отличающие их от поведения однокомпонентного газа.
В смеси углеводородов каждый компонент имеет собственные значения упругости насыщенных паров, поэтому процессы конденсации и испарения не будут проходить при конкретных значениях давления и температуры, а в определённом диапазоне значений давления и температуры. Границы диапазона будут тем больше, чем больше разница между критическими значениями давления и температуры индивидуальных компонентов, входящих в систему.
Изотермическое сжатие системы будет приводить к конденсации сначала более тяжелого компонента, затем более легкого. В результате изотермы в двухфазной области имеют наклон (рис. 12, а). С появлением в системе второго компонента большие различия появляются и в диаграммах "давление – температура" (рис. 12, б).
Рис. 12. Диаграммы фазового состояния бинарных систем:
а. - зависимость "давление – удельный объём" для смеси н-С5Н12 н-С7Н16; б. – диаграмма "давление-температура" для смеси C2Н6 – н-С7Н16
Крайние левая и правая кривые соответствуют давлениям насыщенных паров для легкого (слева) и более тяжелого компонента (справа). Между ними расположены фазовые диаграммы смесей.
Для многокомпонентных систем, в силу их неидеальности, возможны существование двух фаз при температурах или давлениях выше критических величин.
Явления существования двух фаз при изотермическом или изобарическом расширении (сжатии) смеси в области выше критических температур и давлений называются ретроградными явлениями или процессами обратного испарения и конденсации. Изотермические ретроградные явления происходят только при температурах выше критической и ниже максимальной двухфазной температуры. Изобарические процессы испарения и конденсации наблюдаются между критическим и максимальным двухфазным давлением. Такие явления характерны, в основном, для газоконденсатных месторождений, имеющих высокие пластовые температуры и давления.
Рис.13. Различные виды фазовых диаграмм.
1 — кривая точек парообразования; 2 —.кривая точек конденсации.
На рис. 13 показаны фазовые диаграммы в координатах Р - Т (давление — температура) с другими условиями возникновения ретроградных явлений, где нанесены лишь кривые точек конденсации 2 и кривые точек парообразования 1, ограничивающие двухфазную область.
Здесь в области BCN возникают процессы обратной изотермической конденсации, а в области ACD — процессы обратного изобарического испарения.
Если критическая область характеризуется диаграммой (рис. 13,б), где критическая точка С существует при давлении и температуре ниже максимальных Р' и Т', лежащих на кривой парообразования, то изотермическое обратное испарение происходит в области CBN, а изобарическое ретроградное испарение - в области ACND.
Обычно критическая точка находится справа от максимального давления, при котором могут одновременно сосуществовать жидкая и газовая фазы, когда в углеводородной смеси массовая концентрация гептана и более тяжелых фракций высокая
, а метана низкая.
Ретроградные явления характеризуются диаграммой вида (рис. 13, в), когда максимальное давление Р' находится на кривой точек конденсации, а критическое давление — между Р' и Т'. Изотермическая ретроградная конденсация возникает тогда по любой вертикальной линии в области BCDN. В области СBN могут происходить явления обратной изобарической конденсации. Такие диаграммы характерны для жирных и конденсатных газов.
Изотермические ретроградные явления происходят только при температурах выше критических и ниже максимальной двухфазной температуры. Изобарические процессы испарения и конденсации наблюдаются между критическим и максимальным двухфазным давлением.
Ретроградные процессы испарения и конденсации сопровождаются непрерывным изменением состава и объемного соотношения жидкой и паровой фаз. Например, по рис. 14 соответствующему фазовой диаграмме, приведенной на рис. 13 б можно проследить течений процессов обратного испарения и конденсации. На рис. 14 нанесены дополнительные кривые, характеризующие количество жидкой фазы в системе при различных давлениях и температурах. При прохождении по изотерме (допустим, AM) от точки конденсации до точки парообразования можно проследить ретроградный процесс. При давлении, соответствующем точке О. молекулы приблизятся друг к другу достаточно, чтобы силы притяжения начали действовать между тяжелыми молекулами; образуется жидкая фаза, состоящая в основном из тяжелых углеводородов. Этот процесс будет происходить до давления рк, при котором притяжение между легкими молекулами, оставшимися в газе, до этого слабое станет более эффективным из-за большой близости молекул. С этого момента молекулы тяжелых углеводородов начинают вновь втягиваться в паровую фазу. При давлении pк ,выделяется максимальное количество жидкой фазы и называется давлением максимальной конденсации.
Рис. 14. фазовая диаграмма вблизи критической точки:
1— кривая точек парообразования; 2— кривая точек конденсации.
С дальнейшим ростом давления взаимодействие молекул в жидкости также несколько уменьшается вследствие растворения в ней легких углеводородов. Относительная плотность газовой фазы увеличивается, и тяжелые компоненты жидкой фазы начинают все. более и более растворяться в плотной газовой фазе До тех пор, пока не закончится процесс ретроградного испарения. Из сказанного следует, что процесс ретроградного испарения можно упрощенно рассматривать как растворение тяжелых компонентов в плотной паровой фазе подобно тому, как тяжелые фракции нефти растворяются и легком бензине.
Описанные явления обратной конденсации известны в природных условиях — в газовых и газонефтяных месторождениях с высокими пластовыми давлением и температурой. Такие месторождения называются г а з о к о н д е н с а т н ы м и. В состав газов газоконденсатных месторождении в основном входит метан (80—94% по объему). Этан, пропан и бутан содержатся от долей % процента до 4%. На долю пентана и более высококипящих углеводородов в газоконденсатных месторождениях, залегающих на глубине более 1500 м, приходится 1,5—5% (массовая концентрация). Например, на месторождении Зыря (Азербайджан) начальное содержание жидких углеводородов — конденсата, представляющего собой смесь бензиновых и более тяжелых фракции плотностью 785 кг;м3 и ниже, — составляло 0,28 кг!м3 . В составе газов газоконденсатных залежей присутствуют иногда и неуглеводородные газы (N2, С02 и др.).
В газовой шапке газонефтяных месторождений при глубоком залегании пласта может содержаться значительное количество тяжелых компонентов, так как нефть - богатый источник жидких углеводородов, которые при высоком пластовом давлении и температуре растворяются в газовой фазе. Лишь иногда, когда в пласте залегает нефть, бедная бензиновыми фракциями, в газовой шапке содержится мало пентана и более высоких углеводородов.
При эксплуатации газоконденсатных месторождений следует обязательно и точно учитывать фазовые превращения, сопровождающие изменение давления и температуры смеси. Даже небольшие снижения пластового давления в таких месторождениях могут привести к выпадению конденсата из паровой фазы в пласт. Конденсат при этом смочит огромную поверхность пористой среды и будет в значительной мере потерян.
Степень насыщения газоконденсатной залежи высококипящими углеводородами (конденсатом) определяется величиной газоконденсатного фактора. По аналогии с газовым фактором (Го) для нефтяных месторождений понятие газоконденсатный фактор (Ко) применяется для конденсатных залежей. Газоконденсатный фактор - представляет собой отношение количества (дебита) газа в м3 к количеству стабильного конденсата в м3. Величина, обратная газоконденсатному фактору, называется выход конденсата.
Нефть и конденсат полученные, непосредственно, на промысле при данных температурах и давлениях, называются
сырыми. Нефть и конденсат, прошедшие процессы дегазации (сепарации), стабилизации при стандартных условиях называются стабильными.
4.3. Фазовые переходы в нефти, воде и газе
Фазовые переходы подчиняются определённым закономерностям, в основе которых лежит понятие равновесия фаз. Равновесие фаз характеризуется константой равновесия, которая зависит от температуры и давления.
Константа фазового равновесия i-го компонента характеризуется отношением мольной доли компонента в газовой фазе (уi или Nyi) к мольной доле этого компонента в жидкой фазе (хi или Nxi), находящейся в равновесном состоянии с газовой фазой:
. (4.1)
Для определения равновесного состояния газожидкостных смесей используются законы Дальтона и Рауля.
Согласно закону Дальтона каждый компонент, входящий в газовую фазу имеет своё парциальное давление Pi, а общее давление в газовой системе равно сумме парциальных давлений:
. (4.2)
Согласно закону Рауля, парциальное давление компонента над жидкостью (нефтью) равно давлению насыщенного пара (Рнас. пара) или упругости пара (Qi) этого компонента, умноженному на его мольную долю в нефти:
или , (4.3)
где Qi – упругость паров компонента;
Nxi – мольная доля компонента;
pi нас. пара – давление насыщенного пара i-го компонента.
В момент равновесия парциальное давление i-го компонента в газовой фазе равно парциальному давлению компонента над жидкостью. И это равновесное состояние двухфазной системы (газовой и нефтяной фаз) описывается законом Дальтона-Рауля:
; (4.4)
Уравнения (4.4), описывающее равновесное состояние двухфазной системы позволяет рассчитать состав равновесной газовой фазы для известного состава жидкой фазы и наоборот – найти равновесный состав жидкой фазы для известного состава газовой фазы и находящейся с ней в контакте.
Воспользуемся соотношением (4.4) и рассчитаем мольные доли компонентов газовой фазы:
Уравнение: