Файл: Алпысов А.. Математиканы оыту дістемесі оу ралы Павлодар, 2012.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 08.11.2023

Просмотров: 1782

Скачиваний: 140

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Алпысов А.Қ.

1. Математиканы оқыту әдістемесі пәні

2. Математиканы оқытудың мақсаттары мен мазмұны

Математиканы оқытудың қағидалары

Математиканы оқытудың әдістері

5. Математикалық ұғымдар, сөйлемдер және оларды үйренудің әдістемесі

6. Математиканы есептер арқылы оқыту әдістемесі

Математикадан сыныптан тыс жұмыстар, оны өткізу әдістері

9. Педагогикалық практика туралы

10. Геометрияны оқыту әдістемесі Планиметрия курсын үйрену әдістемесі. Геометрия есептерін шешудіңәдістері. Стереометрия курсын үйренуәдістемесі. Геометрияны оқытуда есептерді шеше білу дағдысын қалыптастыру және оны жалпы түрде дамыту аса маңызды мәселелердің бірі болып табылады. Геометриялық есептерді шешу туралы жалпы білік- дағдылар әдетте көптеген есептерді шешу арқылы қалыптасады. Олай болса, студент пен оқытушының не мұғалім мен оқушының жүйелі түрде ұзақ уақыт еңбектенуіне тура келеді. Шешілу жолы беймәлім, әр түрлі теориялық фактілерді байланыстыруды қажет ететін, студенттер шығара алмайтын жаңа есептер де жиі кездеседі. Сондықтан студенттерді кез келген геометриялық есепті шешудің жалпы тәсілдерімен қаруландыру керек. Бұл талап математикалық есептерді шешу практикумының бағдарламасында да айтылған. Практикум белгілі бір есептердің түрлерін және оларды шешудің тәсілдерін таныстыруға бағытталып қана қоймай, қайта дәлелдеудің барынша жалпы әдістерін ойлауды меңгерту болып табылады. Оқытушы студентке әрбір есепті шығартқанда, оның шешімін әдістемелік талаптарға сай іздеуге, соңында мақсатқа сай дұрыс шешімді табуға жәрдемдесетіндей талдау тәсілдері мен болашақ мұғалімдерге қажетті білім-білік дағдыларын қалыптастыруға ұмтылады. Теориялық және әдістемелік білім мен әдіс- тәсілдерінсіз кез-келген әдістемелік есепті шешуге бола бермейді. Практикадан байқалатындай, көбінесе геометрия есептері әр түрлі тәсілдермен логикалық тұрғыда көбірек ойлануды қажетсінеді. Геометрия есептерін шешудің кезеңдерін білу оқушылар мен студенттерде қалыптастырылуға тиісті аса маңызды дағдылардың бірі. Есептерді шешу процесі келесі кезеңдерден тұрады. Есептің шартын түсіну: а) есепті талдау; б) есеп шартын схема түрінде жазу. Есепті талдағанда оның шарты қандай, онда қандай талап қойылған (не берілген, не белгілі, есеп шарты неден тұрады?) екені анықталады. Есеп шартын схема түрінде жазғанда оның сызбасы қоса қарастырылады, осы талдаудың нәтижесінде есеп шартындағы ең керекті, таныс элементтер ескеріліп, олар қысқаша жазылады. Есепті талдау мен оның сызбасын және шартын схема түрінде қысқаша жазу — есепті шешу үшін жоспар іздеудің негізгі құралы болып табылады. Есепті талдай келе осы есепке қандай мөлшерде теориялық білімнің қажет болатындығы анықталады. Есеп шешімін іздеу — есепті шешудің тәсілін іздеу, бұл бүкіл процестің негізгі бөлігі болып табылады. Бұл кезеңде ең алдымен берілген есептің түрі (типі), яғни оның дәлелдеуге, есептеуге не геометриялық түрлендіруге берілгені анықталады, осыған орай есепті шешу тәсілі ізделеді. Есеп шартында берілген элементтер мен іздеуге, анықталуға тиісті белгісіздер арасындағы байланыс ізделеді. Есеп шешімін іздеуде бір-бірімен тығыз байланысты мынадай екі жақты мәселені анықтайды: а) белгілі теориялық білімді шешілуге тиісті есеп шартына сай түрлендіру; б) есеп шартын белгілі теориялық фактілерге сәйкес және оларға байланысты түрлендіру. Бұл арада теориялық білім деп отырғанымыз математикалық ұғымдар мен олардың анықтамалары, теоремалар және математикадағы негізгі әдістер (координаттар әдісі, векторлық әдіс, геометриялық түрлендірулер мен теңдеулер құру әдісі және т.б.). Есептердің түрі мен құрылысына қарай оларды кластарға жіктеп талдау мен шешу әдістерін таңдап алады. Әсіресе, бірнеше теориялық материалдарды біріктіретін, әрі күрделі, әрі көптеген есептерді шешуге теориялық әдістемелік негіз болатын тірек есептерін талдау кезінде белгілі бір гипотеза ұсынылады және оның іске асырылуы тексеріледі. Есеп шешімін іздеу үшін гипотеза ұсына отырып, осы есепке нақтылы қандай теориялық материал керек болатынын анықтаймыз. Теориялық білімді негіздеуші әдісті таңдап, гипотезаны тексереміз. Егер есепті талдағанда бұрыннан таныс элементті байқасақ, не ол шешілуі таныс есепке ұқсас болса, онда есепті шешу үшін белгілі әдісті қолдану мүмкіндігі туралы ой, не есепті шешу жоспары пайда болады. Егер есептің таныс емес түрін шығаруға тура келсе, онда одан бұрыннан таныс есептердің кемінде бір элементін іздейміз немесе берілген есеп шартын бұрын шешілген есептегі таныс бір элемент табылатынын талдаймыз. Жоспарды іске асыру. Бұл арада шешу идеясы табылып, есеп шешіледі. Шешілген есепті талқылау: а) есеп шешімін тексеру; б) есепті зерттеу; в) есеп шешімін әр түрлі параметрлер мен байланыстар бойынша талдау. Есептің шешілуінің және оған қолданылған әдістер мен теориялық негіздеулердің дұрыс екенін, ол шешім есеп шартының барлық талаптарын қанағаттандыратынын білу үшін оны тексеру керек. Есепті зерттеу келесі мәселелерді анықтауы керек: қандай шарт орындалғанда есептің шешімі бар; қандай шарт орындалғанда есептің жалпы шешімі жоқ болады?Есептің шешімін талдау мынадай мәселелерге жауап береді. Есепті шешудің бұдан басқа ең тиімді жолы жоқ па? Есепті жалпылауға бола ма? Осы есептен қандай қорытындылар жасауға болады? Есепті шешу процесінің құрылымы ең алдымен есептің сипатына, есеп шығарушының қандай біліммен, білікпен, дағдымен қаруланғанына тікелей байланысты. мысал. Тікбұрышты үшбұрыштың катеттеріне жүргізілген медианаларысм жәнесм. Оның гипотенузасын табу керек (8-сурет). А ЕС ВF8-суретШешуі. ВС мен AC катеттерін сәйкес х пен у ар-ылы белгілейік. ВСЕ, ACF — тікбұрышты үшбүрыштар болғандықтан,ВС 2  BE 2  EC 2және CF2 AF 2 AC 2 , яғни x2 2  y73  4жәнеx  52  y2 24 . Бұл тендеулер жүйесін шешіп, х пен у-ті табамыз: 73  0,25y2  4  52  4y2 ,y2  36 ; y  6cм ,х  8см;АВ  10см . мысал. ABC үшбұрышында АВ=26см, BC=30см, АС=28см. В төбесінен ВН биіктігі мен BD биссектрисасы жүргізілген. BHD үшбұрышының ауданын табу керек. Шешуі. ABC үшбұрышының ауданын екі әдіспен өрнектейік: SAВС 0,5АС  ВН 0,5  28  h  14h ; екінші жағынанS АВС  336см2 . Демек, 14h=336, h=24 см. Енді CD=x деп алып, ABC үшбұрышының ішкі бұрышы биссектрисасының қасиетін пайдаланайық: ВС:АВ=CD:DA, 30:26=x:(28-x), х=СD=15см; AD=28-15=13см. ВСН : СН 2  ВС 2  ВН 2  324, CH=18 см, DH=CH-CD=18-15=3см, S=0,5DH  ВН 36см2 . мысал. Медианалары mb  9см ,ma  12см ,mc  25смболатын үшбұрыштың ауданын есептеу керек (9-сурет). СА сурет Шешуі.ABC : mb  BE  9см ,ma  AD  12см .mc  CF  15см. Берілген элементтер мен іздеген элементтің арасындағы байланысты анықтайық (О — медианалардың қиылысу нүктесі). AOC : AО  2 m  2 12  8см , OC  2 m 10см , OE  1 m 3см 3 a33 с 2 b ОЕ медианасын екі еселеп, АОС үшбұрышын AOCB1параллелограмына дейін толықтырайық. Сонда AC 2  OB2  2(AO2  OC2 ) ; AC . Осы сияқты OD медиананы екі еселеп, ВОС үшбүрышынпараллелограмға толықтырсақ: BC   .Осылай қарастырып, АВ=10см екенін аламыз. Енді Герон ABCформуласымен ауданды есептесек, S  72см2 . Осы есепті басқа әдіспен шешейік.AOC менABC -ның табандары тең болғандықтан, S 1 SШынында да,OME BNE ,OM  OE , алOE  1 AOC3 AOCBN BEBE 3 болғандықтан,OM  1 . СондықтанBN 3 SAOC SABC OMBN 1 ,3SAOC 1 S3ABC ЕндіAOCB1параллелограмынан: 1SAOC  SOCB ; OC  2 EC  2 15  10 , CB  AO  2 m  8, OB  2OE  2  1  9  6 , AOC ABC3 3 1 3 a 1 3 p  12 ,S  24см2 ,S  72см2 Геометрия есептерін шешудің әдістеріне: а) геометриялық; б) алгебралық; в) комбинациялық деп аталатын негізгі әдістер жатады.Есептерді геометриялық әдіспен шешкенде логикалық ойлаудың жәрдемімен белгілі теоремалар арқылы тұжырымдауды қажетсінетін сөйлемдерді дәлелдейміз. Ал есептерді алгебралық әдіспен шешкенде ізделінген шаманы табу, не тұжырымдауға тиісті сөйлемді дәлелдеу тікелей есептеу жолымен немесе теңдеулер мен олардың жүйелерін құру арқылы іске асады. Тікелей есептеу әдісінің мәні мынада: есептің берілгендері мен белгісіздерінің жан-жақты байланыстарынан аралық қосымша белгісіз шамалар тізбегі құрылады, тізбекке қатысытын әрбір белгісіз шама анықталады немесе іздеген шама белгілі шамалар арқылы өрнектеледі. - мысал. Теңбүйірлі ABC үшбұрышының табаны AC, төбесіндегі В бұрышы сүйір, С бұрышының биссектрисасы CD кесіндісі болсын. D нүктесі арқылы CD биссектрисасына перпендикуляр түзу жүргізілген. Бұл түзу үшбұрыштың AC табанымен немесе оның созындысымен Е нүктесінде қиылысады. AD =0,5ЕС болатынын дәлелдеу керек (10-сурет). ВFDЕ А K С сурет Есеп геометриялық әдіспен тікелей шешіледі. CD кесіндісі — EFC үшбұрышының әрі биіктігі, әрі биссектриссасы. D нүктесін ВС қабырғасымен (CD  EF және CD — С бұрышының биссектриссасы) қиылысқанша созсақ, EFC теңбүйірлі үшбұрышы шығады. Есептің шарты бойынша CD  EF. Ендеше ED = DF. D нүктесінен ВС-ға параллель түзу жүргізсек, ол AC табанымен К нүктесінде қиылысады. Бұл DK кесіндісі EDC үшбұрышының медианасы бола алады. ЕК:КС = ED:DF = 1, бұлардан DK = 0,5ЕС, сондықтан AD = DK= 0,5 EC. -мысал.Теңбүйірлі трапецияға іштей дөңгелек сызылған. Трапеция ауданының дөңгелек ауданына қатынасы -ге тең. Трапецияның үлкен8 табанындағы сүйір бүрышын табу керек (11-сурет). ABCD — теңбүйірлі трапециясы берілген,Sдон : STP  : 8 . Бірінші тәсіл. Есептің мазмұнынан оны синтез әдісімен немесе алгебралық әдіспен шешуге болатынын байқаймыз. Синтез әдісі бойынша берілгендерге сүйеніп дөңгелектің радиусын табуға болады. Дөңгелектің радиусын г, трапецияның табан қабырғалары ұзындықтарын a, b деп қосымша белгісіздер ендіреміз. Есеп шарты бойынша r 20,5(a b)  2r  , 8a b 8r,r  a  b .8 Екінші жағынан шеңберді сырттай сызылған төртбұрыштың қасиеті бойынша AD+BC=AB+DC теңдігін жаза аламыз. Бұдан 2AD=a+b, AD=0,5(a+b). Тікбұрышты AED үшбұрышынанsin A  DE AD4r a  b; бұл теңдікке r-дің мәнін қойып ықшамдасақ, sin A = 0,5 шығады. Сонымен,A  .6 A BE сурет Бұл есепте жоғарыда айтылған тірек элементін және қосымша белгісіздер енгізу, теңдеу құру, қосымша белгісіздерді ығыстыру процестерінің барлығы орындалады.Екінші тәcіл. 11-суреттен AD=BC теңдігін ескеріп, бір нүктеден шеңберге жүргізілген екі жанама тең болатынын пайдалансақ, AN  a ,2NN  b,2sin A  DEAD2r AN  ND4r .a  b r-дің 1-тәсілдегі мәнін орнына қойсақ, sinA = 0,5, бұданA  .6 Теңдеулер құру арқылы шешілетін есептерді қарастыралық.6-мысал. Тікбұрышты үшбұрыштың гипотенузасы с-ға тең, үшбұрыштың бір сүйір бұрышынан катеттерінің біріне ұзындығы m-ге тең медиана жүргізілген. Осы үшбұрыш катеттерінің ұзындықтарын табу керек (12-сурет). ВDС А12-сурет Есепті теңдеу құру әдісімен (алгебралық әдіспен) шешу үшін АС=x, BC=y деп белгілейік. Тікбұрышты үшбұрыштардан Пифагор теоремасы бойынша:АС 2  ВС 2  AB 2 ,АС 2  СD2  AD2немесеx2  y2  c2 , x2 (0,5y)2 m2 . Бұл жүйенің шешіміBC  2, AC . Математикалық есептердің көбінде қосымша белгісіздер енгізу әдісі қолданылады. Бұл есептердің берілген элементтері мен қажетті теориялық материалдарды байланыстыруға септігін тигізеді. Есепті шешу барысында осы қосымша белгісіздер ығысады.7-мысал. Ромб биіктігі оның қабырғасын m және n бөліктерге бөледі.Ромб диагоналдарының ұзындықтарын табу керек (13-сурет). СА13-сурет тәсіл. Теңдеулер құруға қажетті белгісіздер енгізелік. Ол үшін АС=x, BD=y деп белгілейміз. СондаАВ  AE  EB  m  n.Бұл қосымша элементті есеп шартындағы белгілі және белгісіз шамалар арқылы өрнектейміз. ЕD  h десек,h2  y2  n2жәнеh2  (m  n)2  m2.h2 -тың мәндерін теңестірсек, у2  n2  (m  n)2  m2, х-ті табамыз:y 2  2mn 2n2немесеy . АОВ үшбұрышынан АО2  AB2  OB2  (m n)2  (0,5 AC  x  2AO 2n(m  n))2 ,. Сонда жауабы: 2n(m n), . тәсіл. Аудандарды пайдалану әдісі бойынша 0,5d1d2шамасын қосымша элементтер арқылы табылатын ауданға теңестіреміз, яғни 0,5d1d2  (m  n)2n(m  n) , мұндағыh 2n(m  n) . АОВ үшбұрышынан (0,5d )2  (0,5d )2  (m n)2 немесе d 2  d 2  4(m  n)2 . Бірінші теңдіктің екі1 2 1 2 жағында 4-ке көбейтіп екінші теңдікке қоссақ, онда 1 2(d  d )2  4(m  n)  4(m n)2  4(m n)( m  n). Бірінші теңдіктен d1 -ді тапсақ және оны соңғы теңдікке қойсақ, түрлендіргеннен кейінd  болады. Енді d 2  4(m  n)2  d2 2 1 1 теңдігінеd 2 -нің табылған мәнін қойсақ,d1  екені шығады. Егер берілген есепте кейбір шамалардың (ұзындықтардың немесе аудандардың) қатынастарын табу қажет болса, дербес жағдайда белгілі бір бұрышты есептеу қажет болса, ондай есептер көмекші параметр енгізу деп аталатын тәсілмен шешіледі. Бұл тәсіл бойынша есепті шешу үшін сызықтық элементтердің біреуін белгілі деп алып, іздеп отырған шаманы сол арқылы өрнектейді де олардың қатынастарын құрады. Мектеп оқушыларының кеңістікті қабылдап, оны көз алдына елестете алуы стереометрияны оқытудың негізгі мәселелерінің бірі болып саналады. Осы айтылған мақсатты іс жүзіне асыруда кеңістіктегі салуға берілген есептерді шешудің зор мәні бар. Жазықтықтағы геометриялық салулар теориясы жеткілікті түрде талқыланып қарастырылады, ал стереометрияның әдістемелік мәселелеріне әлі де толық көңіл бөлінбей келеді. Геометриялық салулар теориясы – салуды негіздеу, есептерді кластарға жіктеу, есеп шешу әдістері, белгілі бір класқа жататын есептерді шешу критериі, салу есептерін шешкенде барынша жай әдістерді тиімді қолдану сияқты мәселелерді қарастырады. Кеңістіктегі салу есептерін кластарға жіктеу туралы әр түрлі көзқарастар мен тәсілдер бар. А.Н. Чалов кеңістіктегі салу есептерін геометриялық салуды орындау тәсілдері бойынша келесі топтарға бөледі: 1) елестету арқылы шешілетін есептер; 2) проекциялық сызбамен шешілетін есептер; 3) модельмен шешілетін есептер. Салуға берілген стереометрия есептерін позициялық және метрикалық деп екі топқа бөлетіндер де бар. Негізгі элементтерінің қиылысуын ғана іздейтін, соны салумен аяқталатын есептер позициялық әдіспен шешілетін есептерге жатады. Кесінді салу, белгілі бір шамасы бар бұрышты салу, перпендикуляр тұрғызу, биссектриса жүргізу және т.б. белгілі шарттарды қанағаттандыратын фигура салу талабы қойылатын есептер метиркалық есептерге жатады. Мысалы, В.А. Гусев, В.Н. Литвиненко, А.Г. Мордкович өздерінің құрастырған «Математикалық есептер шешу практикумында» кеңістіктегі салуға берілген есептерді мынадай әдістер бойынша топтарға бөледі: 1) кеңістіктегі қарапайым салулар; 2) нүктелердің геометриялық орындары; 3) кейбір нүктелердің геометриялық орындары мен түзулерді пайдалану; 4) кескіндеу арқылы салу.Салуға берілген стереометрия есептері талдау, салу, дәлелдеу жәнезерттеу сияқты төрт кезеңнен тұрады.Талдау – бір бүтінді, құрамды бөліктерге жіктейтін, әр бөлікті жеке қарастыратын зерттеу әдісі. Ол салу есебін шешудің жоспарын табуға мүмкіндік тудырады. Талдау – есеп шешудің барынша маңызды кезеңі. Есепке дұрыс жүргізілген талдау – есепті шешу жоспарын дұрыс құрастырудың кепілі. Салу есебіне талдау жасағанда сызба басты рөл атқарады. Сонда есеп шартын, сызбадағы элементтердің өзара орналасуына барынша басынан аяғына дейін талдау жасалады, есеп шартында берілгендер мен іздеген элементтер арасында байланыс орнатылады. Есептің салу кезеңінде салу есебіне қолданылатын аксиомаларды, теоремаларды, қосымша қарапайым салуларды дәл көрсету керек. Дәлелдеу кезеңі есеп шешімінің дұрыстығына күдік туғанда қажет болады. Салу есебін зерттеу кезеңінің өзіндік маңызды ерекшелігі бар. Ол қандай шарттар орындалғанда есептің шешуі бар болады және неше шешімі бар деген сұрақтарға жауап береді. Сонымен бірге зерттеу кезеңі кеңістік елесті дамытуға мүмкіндік туғызады.Салуға берілген алғашқы есепті шығарғанның өзінде есепті шешудің кезеңдерін (талдау, салу, дәлелдеу, зерттеу) дәл анықтап бөлу керек.Кеңістіктегі салуға берілген есептерді шешудің негізгі әдістері:аксиоматикалық әдіс, проективтік әдіс, геометриялық орындар әдісі.Аксиоматикалық әдістің негізгі мәні есепті шешу кезінде салудың өзі орындалмайды, салуға берілген есеп элементар салуларға келтіріледі, кейін бұлардың бәрін бірге қарастыруға болатындай түрдегі барлық жай амалдар қарастырылады. Салу есебінде көрсетілген амалдар кейде аксиомалар деп, ал есепті шешу әдісі аксиоматикалық әдіс деп аталады. Себебі есепке қолданылатын барлық амалдар елестеу арқылы формальді түрде жүргізіледі де логикалық түрде негізделеді, мұндай әдіс формальді-логикалық әдіс деп те аталады. Әдетте логикалық ой тұжырымдары сызба арқылы жүрізіледі. Бұл есеп шешімін барынша жеңілдетеді: ойды іске қосады, көптеген геометриялық элементтер мен олардың жиынын есте сақтап қалуға, кеңістік жөнінде дұрыс түсінік орнығып қалыптасуына мүмкіндік берді. Аксиоматикалық әдіс оқушылар санасында кеңістік туралы түсініктің, логикалық ойлаудың дамуына барынша терең және берік теориялық білім алуға, әсіресе белгілі бір салуларға түсінік беретін стереометрияның алғашқы теоремаларын үйренуге мүмкіндік туғызады. Есептер шешу кезінде алдымен көрнекі құралдар – жазықтықтар моделі (нұсқасы), нүктелер мен түзулерді мақсатты түрде қолдану пайдасы зор. Осындай әдістер көмегімен салудың талаптары айқын түрде көрсетіледі, бұдан соң логикалық түрде негіздеу және логикалық негізде салынған кескінді салу дәлелденеді. Модельдеу есеп шешімін көрнекі түрде талдау жасауға, талдауды ықшамдауға мүмкіндік береді.Проективтік әдіс (проекциялық сызбада салу есебін шешу әдісі). Егер ерекше проекциялау ережесі бойынша геометриялық денелердің кескінін пайдалануға мүмкіндік болса, онда ол есепті сызбалық құралдың көмегімен барлық салу жұмысын орындауға болады. Мұндай кескін геометриялық денені бір жазықтыққа проекциялау жолы мен алынады және проекциялық сызба деп аталады, ал есепті шешу әдісін «проекциялық сызбада салынатын есеп» деп атайды.Кеңістіктегі салу есептерін шешуге барынша ынғайлы әдіс – еркімізше алынатын параллель проекциялау. Ол сызбаның көрнекілігімен, оны салудың өте жай қарапайым болатынымен сипатталады. Проекциялық сызба арқылы шешілетін салу есептері төрт кезеңнен тұрады. Бірақ барлық кезеңдерді әр есепте түгел іске асыру талабы қойылмайды.Геометриялық орындар әдісі. Кеңістікте элементтердің геометриялық орындарын табуға берілген кез келген есепті салу есебі ретінде тұжырымдауға болады. Кеңістіктегі геометриялық орындар әдісімен салуға берілген есептерді шешудің мәні төмендегі мәселелер арқылы сипатталады. Әуелі есептегі берілген шарттардың біреуінен басқасын ескерусіз қалдыра тұрамыз. Өзіміз әдейі таңдап алып қалаған бір ғана шартты қанағаттандыратын нүктелер жиынын қарастырамыз. Бұдан әрі есептің екінші шартын қанағаттандыратын нүктелер жиыны қарастырылады жәнет.с.с. Біз қарастырған барлық жиындардың қиылысуы есептің шешімі болады. Кеңістіктегі салу есептерін шешудің тек төрт әдісін қарастырдық. Кеңістікте салуға берілген есептерді шешудің басқа да әдістері бар. Есептер шешудің бір немесе басқа әдісін таңдап алу шешілуге тиісті есептің сипатына, есеп шығарушының дайындық дәрежесіне, т.б. байланысты. Күрделі есептерді шешу кезінде көбінесе бір мезгілде бірнеше әдіс қатарынан қолданылады.Кеңістіктегі салуға берілген есептерді шешуге мысалдар қарастырайық. мысал. Берілген а және b түзулеріне паралелль, берілген А нүктесінен өтетін жазықтық жүргізу керек. Талдау. Іздеген жазықтық а түзуіне паралелль а1түзуі арқылы өтуі керек. Дәл осы сияқты іздеген жазықтық b түзуіне паралелль b1түзуі арқылы өтуі керек. а1және b1түзулері А нүктесі арқылы өтуі керек. Салу. 1. А нүктесі және а түзуі арқылы жазықтығын жүргіземіз. 2.  жазықтығында А нүктесі арқылы а түзуіне паралелль а1түзуін жүргіземіз. 3. А нүктесі және b түзуі арқылы жазықтығын жүргіземіз. 4. жазықтығында А нүктесі арқылы b түзуіне паралелль b1 түзуін жүргіземіз. 5. а1 және b1түзулерінен бір-бірден М және N нүктелерін таңдап аламыз. 6. А, М, N нүктелері арқылы іздеген а жазықтығын жүргіземіз. Дәлелдеу. 1. Салуымыз бойыншаа1 ажәнеа1 . яғни,а . 2. b1 b -бұл салуымыз бойынша жәнеb1 . Демек,b . 3.A a1жәнеA  b1 . сонда, A.Зерттеу. А нүктесінің а немесе b түзулерінде жатуына тәуелсіз есептің әрқашан шешімі болады. Егер а мен b түзулері паралелль болмаса, онда есептің бір ғана шешімі бар болады. Ал көп шешуі бар болады.а bболса, онда есептің сансыз мысал. Барлық төрт қабырғасы және қарама-қарсы екі қабырғасының орталарын қосатын кесінді берілген жағдайда ABCD төртбұрышын салу керек (14-сурет). D СC114-суретШешуі. ABCD — ізделген тертбұрыш, EF — АВ және DC қабырғаларының орталарын қосатын кесінді болсын. AD қабырғасын параллель жылжытыпED1және ВС қабырғасын параллель жылжытыпEC1 жағдайына келтіреміз, сондаDD1  AE ,DD1AE ; CC1  BE ,CC1BE , DF  CF — бұлар шарт бойынша, демек,DD1 F  FC1C(екі қабырғасы және олардың арасындағы бұрышы бойынша тең). Бұл үшбұрыштардың теңдігінен DFD1  CFC1шығады. Демек,D1 , F жәнеC1 — нүктелері бір түзудің бойында жатады.D1 EC1үшбұрышында екі қабырғасы мен үшінші медианасы белгілі болғанда оны салуға болады. Бұдан соң үш қабырғасы бойынша DD1 F жәнеFCC1үшбұрыштарын салып,DAED1 , жәнеBEC1C параллелограмдарын салуға болады. Бұдан соң A және В нүктелері анықталады. Салу.DEC1үшбұрышынD1 E  ADжәнеCE1  BC, сондай-ақ EF медианасы бойынша саламыз. Бұл үшін ең алдымен 2EF,ED1 ,EC1 , үш қабырғасы бойынша үшбұрыш салып, оны параллелограмға дейін толықтырамыз. Осы параллелограмның жартысыD1 EC1 — үшбұрышы болады. Қабырғалары1 DC2және1 AB2болатын өзара тең үшбұрыштарD1 F жәнеFC1кесінділеріне салынады. Бұлар арқылы D және С нүктелерін саламыз.DAED1жәнеBEC1Cпараллелограмдарын салып, А және В нүктелерін табамыз.Дәлелдеу. ABCD төртбұрышы — ізделген төртбұрыш, себебі ол есептің барлық шарттарын қанағаттандырады. DF және FC бір түзудің бойында жатыр, себебіDFD1  CFC1 жәнеDF1 және C1 Fбір түзудің бойьшда жатыр. Зерттеу.ED1C1 үшбүрышын салу үшін2EF  AD  BCжәне 2EF AD  BCшарттарының орындалуы қажетті, алDD1 FжәнеFCC1 — салу үшінD F  1 ( AB CD) және D FAB  CDшарттары орындалуы 1 2 1қажетті. Егер бұл шарттар орындалса, онда есептің бір ғана шешімі бар болады.Әдістемелік ұсыныстар: 1. Кеңістікте салуға берілген есепті шешуге кірісуден бұрын материалдың теориялық жағын меңгеріп алу қажет. 2. Салу есептерін шешуге кіріскенде алдымен қарапайым салулардан бастап шешу керек. 3. Есептер шешу кезінде әсіресе көрнекі құралдар мен модельдерді (нұсқаларды) пайдаланудың ерекше маңызы бар. 4. Негізгі салуларды дәл орындау керек: а) кеңістіктегі нүктенің орнын анықтау; б) берілген екі нүкте арқылы түзу жүргізу; в) бір түзудің бойында жатпайтын үш нүкте арқылы жазықтық жүргізу; г) түзу мен жазықтықтың қиылысу нүктесін табу; д) әрбір жазықтықта барлық планиметриялық салулардың орындалуы; е) егер өзін анықтайтын элементтер берілсе, онда геометриялық дене салу.Егер кеңістікте салуға берілген есептердегі негізгі амалдар, яғни онда ұсақ бөліктерге бөлінетін негізгі қарапайым салулар түгел орындалса, онда кеңістіктегі кез-келген геометриялық салу орындалады деп есептеледі. 1   ...   6   7   8   9   10   11   12   13   ...   16

Практикалық сабақтар

Математиканы оқыту әдістемесі пәні бойынша тест сұрақтары

Тест сұрақтарының жауаптары

Әдебиеттер

Алпысов Ақан Қанапияұлы


«Сыбайлас бұрыштардың қосындысы

1800

болады» деген теореманы өздері

айтады. Бұл көрнекі - белсенділік әдістің бір жақсысы оқушылар өздігінен белсенді жұмыс істейді, есептер шығаруды үйренеді. Сөйтіп, оқушыларды теоремамен таныстырғанда неғұрлым олар саналы және белсенді қатынасатын болса, соғұрлым теорема және оның ілгерідегі дәлелдеуі оларға түсінікті болады. Теореманы оқушылардың бұрыннан білетін материалдарына сүйеніп, оларды негізге ала отырып логикалық жолмен дәлелдейтініміз белгілі. Дәлелдеу процесінде қарастырылып отырған теорема мен өтілген теоремалар арасындағы логикалық байланысты көрсету үшін бір–екі теорема алып, олар «бұрынғы» қандай теоремалар арқылы дәлелдейтінін схема сызып түсіндірген жөн. Мұғалім әрбір келесі теореманы дәлелдеу үшін қандай өткен материалдарды қайталап келуді дер кезінде оқушыларға тапсырып отырғаны жөн. Егер тапсырма алдын ала берілмеген болса, онда мұғалім теореманы дәлелдеу процесінің қай жерінде өтілген қандай материалдың, қалай қолданылып жатқанын толық түсіндіруі қажет және кейін сол теореманы қайталағанда оқушылардың өткен материалдарды қалай пайдалана білетінін тексеру керек.

Оқушыларға теореманы дәлелдей білуді үйрету үшін мұғалім алғашқы теоремадан бастап төмендегідей жұмыстар жүргізу керек:

а) оқушыларды өз бетімен жұмыс істеуге үйрету;

ә) әуелгі кезде оқушылардың интуициясын, өмірде көрген білгендерін, көрнекіліктерді кең түрде пайдаланып, біртіндеп логикалық дәлелдеуді үйрете беру;

б) теоремалардың өмірде қолданылатын орындарын көрсетіп, практикалық жұмыстар жүргізу;

в) теореманы қолданып шешілетін есептер арқылы оқушыларды пәнге қызықтыру.

Оқушылардың ойлауын үзбей жүйелі түрде баяндап беру тәжірибесі және әрбір айтылған ойын толық дәлелдеп берерліктей дағдысы болмағандықтан теореманы дәлелдеу алғашқы кездері қиынға түседі. Теореманы дәлелдеу үрдісінде әрбір сөзге мән беру керек. Теореманы логикалық жолмен дәлелдегенде белгісізден бастап белгіліге қарай көшеміз, мұнда әрбір қадам жасауға толық дәлел келтіріледі және ол сапалы түрде орындалады.

Синтез әдісімен теореманы дәлелдегенде біртіндеп белгіліден белгісізге көшеміз, элементар геометрияда теоремалардың көпшілігі осылайша дәлелденеді.

Теореманы қарсы жорып дәлелдеу әдісі. Қарсы жорып дәлелдеу әдісі математикада қолданылады, сондықтан оған VI сыныптан бастап үйрету керек. Бұл әдісті қолданып теорема дәлелдегенде оқушыларға мынадай қиыншылықтар кездеседі:


а) белгілі дәлелдерді пайдалана отырып тура жолмен дәлелдеуге үйренген оқушыларға, қарсы жорып дәлелдеу түсініксіз болады;

б) көзбе – көз дұрыс емес деп (әсіресе сызба теріс сызылғанда) ұйғарудың қандай қажеттігі бар екендігі оқушыларға түсініксіз болады.

Мысалы, бір түзуге жүргізілген екі перпендикуляр туралы теореманы дәлелдегенде бір мұғалім, сызба жөнінде еш нәрсе айтпай «бір түзуге жүргізілген екі перпендикуляр бір Р нүктесінде қиылысады екен дейік», - деп тақтаға екі перпендикулярды Р нүктесінде қиылыстырып сызған. «Р нүктесінен түзуге неше перпендикуляр түсіріледі?» дегенде кей балалар

«төртеу», кейбіреулері «Р нүктесінен бір де бір перпендикуляр түсірілген жоқ» деп жауап берген. Бұл сызбаның нені кескіндейтінін оқушылардың түсінбейтіндігі. Істелінетін істің, керісінше, теріс жақтарын байқап қарап, содан кейін қорытынды жасау өмірде де көп кездеседі. Сондықтан мұғалім өмір тәжірибесінен мысалдар келтіруіне болады. Бұл әдістің бір жақсылығы дәлелдегенде қорытындының дұрыс жағымен қатар, оның бірнеше қате жақтарымен танысуға мүмкіншілік болады. Теореманы беттестіру тәсілімен дәлелдеу былайша қарағанда оңай сияқтанғанымен бұл тәсілді оқушылар көбіне дұрыс түсінбейді. Мысалы, беттестіру арқылы үшбұрыштардың теңдігін дәлелдегенде, оқушылар үшбұрыштар беттестірілсе, олардың теңдігі содан келіп шығатынын біліп, беттестіруге тырысудың орнына, олар үшбұрыштар тең болса болғаны өзінен-өзі беттеседі деп түсінеді. Егер

дәлелдеу процесінде көрнекті құрал ретінде қағаздан немесе картоннан жасалған тең екі үшбұрышты қолдансақ, онда олар оқушылардың ойлағанындай бірімен–бірі беттесе кетеді де беттестіру тәсілінің қыр–сыры оқушыларға байқалмайды. Сондықтан дәлелдегенде екі үшбұрыш алып, мынандай жағдайларды қарастырған жөн:

а) қабырғалары да, бұрыштары да тең емес кез–келген екі үшбұрыш аламыз. Үшбұрыштардың ешбір тең элементтері болмаса да, олардың бір төбелері мен қабырғаларын бірінің үстіне бірі келетіндей етіп беттестіруге болады, бірақ үшбұрыштардың басқа элементтерінің біріне–бірінің дәл келмеуі бізге байланысты емес;

б) егер екі үшбұрыштың біреуінің бір қабырғасы мен іргелес бір бұрышы, екіншісінің сәйкес бір қабырғасы мен іргелес бір бұрышына тең болса, онда сол тең бұрыштарды жасайтын сәйкес екінші қабырғалары, тең болмаса да, үшбұрыштарды беттестіргенде бірінің бойына бірі келеді, бірақ үшінші сәйкес төбелері бір – біріне дәл келмейді.



Сөйтіп, үшбұрыштарға беттестіру тәсілін қолданғанда олардың сәйкес қабырғаларының бірі екіншісінің бойына келуі бұрыштарға, ал олардың төбелерінің біріне–бірінің дәл келуі қабырғалардың ұзындықтарына байланысты екендігін, көрнекі құралдар арқылы оқушыларға жақсы түсіндіру керек.

    1. Математиканы оқып-үйрену ұғымды қалыптастыру мен оны терең танымдық дәрежеге жеткізуден, математикалық тұжырымдарды, теорияларды дәлелдей білуге үйретуден және оны нақтылы іс-әрекетте, есеп шығаруға қолдана білуден тұрады. Мұның маңыздысы математикалық ұғымдарды игеру болғандықтан, оның алатын орны да ерекше. Оқушының білім – танымының бастауы оның қолданылар аясының кеңдігі мен түсінігі үшін мұғалімнің өзі олармен жете таныс әрі оның қасиетінен жан – жақты хабардар болуы керек. Сонда ғана шындық дүниенің заттары мен құбылыстары туралы оқушы дұрыс түсініктер алып, олар туралы тура ой түзеді. Мұның өзі баланың дамуына, ойының жетлуіне игі әсер етіп, алған таным – білімдерін әрі қарай толықтырып, ұштап, күнделікті өмірде қолдана білуіне жол ашады. Математикалық ұғымдарды қалыптастыру оқушылардың белсенді іс-әрекетінсіз мүмкін емес. Математикалық ұғымдарды игеру таным процесінің жалпы және нақтылы іс-әрекеттері арқылы жүзеге асырылады. Оларға жалпылау, нақтылау, анализ, синтез, салыстыру, аналогия, жіктеу және бір жүйеге келтіру іс-әрекеттері жатады. Математикалық ұғымды игеру оқушының аналитикалық-синтетикалық қызметінің нәтижесі ретінде түсіндіріледі. Талдау арқылы оқушы заттар мен құбылыстардың жекелеген қасиеттерін бөліп алады, ал синтез көмегімен жалпы белгілері бойынша оларды біріктіреді. Одан соң объектінің ерекше қасиеттері абстракцияланып, терминдермен бекітіледі. Бұл процесс бөлініп алынған ұғымды қолдана білумен аяқталады. Математикалық ұғымдардың қалыптасуы күрделі процесс. Ұғымдардың қалыптасуы мынадай схема бойынша жүреді: қабылдау – сезіну – түсінік – ұғым.

Сезіну – сыртқы дүние заттары мен құбылыстарының жеке белгілерінің мидағы бейнеленуі. Сезінумен тікелей байланыста қабылдау жүзеге асырылады. Қабылдау - заттар мен құбылыстардың мидағы тұтастай бейнеленуі. Қабылдау кезінде ми қабығының аналитикалық-синтетикалық қабілеті айқын көріне бастайды. Материалдық дүниенің заттары мен құбылыстарының кейбір жалпы жақтары қабылдау арқылы біздің санамызда қандайда бір байланыс құрап, жалпы түсінік пайда болуына себін тигізеді. Түсінік есте сақтаумен тікелей байланысты. Түсінік заттың бұрын қабылданған бейнесін қайталау. Түсінік сезіну мен қабылдаудан тыс бола алмайды. Ұғым – объективті шындықтың жалпыланған маңызды қасиеттерін бейнелейтін ойлау формасы. Әрбір ұғымға біздің қабылдауымызда және түсініктерімізде бейнеленетін материалдық дүние объектілерінің біршама класы сәйкес келеді.


  1. Нақты - индуктивтік әдіспен ұғымды ендіруде оқыту процесінің негізгі кезеңдері мыналар:

  1. берілген ұғымның қажеттігін көрсететін (қабылдау-сезіну) практикалық мысалдар келтіру;

  2. берілген ұғымның маңызды және өте маңызды емес белгілерін анықтайды (оқушылар) және берілген ұғымды белгілейтін термин ендіреді (мұғалім). Ол үшін қабылдаудан (сезіну) түсінікке өтетін өтпелі кезең керек, берілген ұғымды белгілейтін терминнің дәлелі қажет (мұғалім);

  3. берілген ұғымның барынша маңызды қасиеттері таңдап алынады және осы ұғымның анықтамасы тұжырымдалады (оқушылар); бұдан соң оған мұғалім дәл анықтама береді, мұны оқушылар қайталайды. Бұл үшін арада түсініктен ұғымға ауысатындай жағдай болуы керек.

  4. арнайы бөліп алынатын ұғым нақты мысалдармен көрсетіледі, қарама-қарсы мысалдар келтіріледі және символдық белгілеуі көрсетіледі (оқушы және мұғалім). Бұл ұғымның пайда болуын білдіреді.

  5. бұдан соң оқушылар басқа ұғымға мүмкін болатын басқа анықтама береді. Бұл ұғымның меңгерілуі болады.

  1. Абстракты-дедуктивтік әдіспен оқушылардың оқытудың негізгі кезеңдері келесілер болып табылады:

  1. ең алдымен жаңа ұғымға анықтама беріледі, бұл үшін оны белгілеуші термин дәлелденеді.

  2. бұдан соң ұғым ендірілген өрнектің жеке және ерекше жағдайлары қарастырылады. Контур мысалдар келтіріледі.

  3. келесі кезекте ендірілген ұғым нақты мысалдар арқылы иллюстрацияланады.

  4. соңында ендірілген ұғымның қосымшасы үшін мысалдар келтіріледі.

  1. Сабақта оқушыларға берілген жаңа ұғымның меңгерілгенін қалай білуге болады?

Егер ұғым меңгерілген болса, онда оқушы

  • ұғымның көлемі мен мазмұны туралы толық түсінігі болады;

  • математикалық іс-әрекеттің барысында ұғымды қолдана біледі;

  • жаңа жағдайларда өзінің білімі мен тәжірибесін қолдана біледі.

  1. Ұғымның анықтамасынан оқушылар қателіктер жібермеуі үшін олар анықталған және анықтаушы ұғымдарды ажырата білуі керек.

Анықтама: Анықталатын объектіге сәйкес келетін ұғым анықталған ұғым деп аталады. Анықталған объектінің мазмұнының көмегімен ашылатын ұғым анықтауыш деп аталады.

Сонымен бірге оқушылар ұсынылған анықтаманың маңызды талаптарын білуі керек:

  • кез келген анықтама өлшемде болуы, яғни анықталушы объектінің көлемі анықталған ұғымның көлеміне тең болуы керек. Қате анықтамалардың мысалдарын келтіру керек.

  • анықталушы ұғымды сол ұғымның өзімен тікелей анықтауға болмайды.

  • анықтамалар мүмкіндігіне қарай объектіні керісінше анықтамауы керек.


  1. Жаңа ұғымды ендіру барысында мұғалім оның белгілеріне назар аудару керек. Егер мұғалім ұғымның анықтамасын тұжырымдамадан, кітаптағы берілген сызбалы көрсетумен шектелсе, онда оқушылар бұл ұғымды дұрыс меңгермейді. Математикалық ұғымдарды саналы түрде меңгеруге мақсатты түрде қойылатын ауызша жаттығулар мен сұрақтар жүйесінің зор маңызы бар.

  2. Оқушылар жіберген қателерді түзеткеннен гөрі алдын ала сақтандыру жұмысын жүргізген дұрыс. Ол үшін:

  • жаңа ұғымды формальді ендірмеу керек;

  • оқушыларды ұғымдардың анықтамасын өз бетінше үйренуге баулу керек;

  • ендірілген ұғымның, сөздің, анықтаманың дәлелдеулерін табу;

  • сабақтың соңында осы сабаққа қажетті ұғымның анықтамасын қайталау;

  • жаңа ұғым мен ескі ұғымның арасындағы байланысты орнату;

  • анықтамаларды анық, дәл, қысқа, қатаң тұжырымдауды талап ету.






болмаса, ал ол

Есепті тек түсініп қою жеткіліксіз, оны шығарам деген талап-тілек те болу

қажет. Күштіталап-тілек
қиын есепті шығару мүмкінемес,

бар болса шығаруға болады. Құштарлық болған жерде жол табылады!

Пойа Д.


1   2   3   4   5   6   7   8   9   ...   16