Файл: 1. Иммобилизованные ферменты и их преимущества 5 Основы технологии иммобилизации ферментов 9.docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 08.11.2023

Просмотров: 334

Скачиваний: 5

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Введение

1. Иммобилизованные ферменты и их преимущества

2. Основы технологии иммобилизации ферментов

2.1. Общие принципы иммобилизации

2.2. Методы физической иммобилизации

2.3. Микрокапсулирование

2.4. Иммобилизация металлохелатным способом

3. Носители для иммобилизованных ферментов Для получения иммобилизованных ферментов и клеток используется огромное число носителей. Основные требования, предъявляемые к материалам, которые могут быть применены в качестве носителя для иммобилизации: высокая механическая, химическая и биологическая устойчивость (стойкость), обеспечивающая стабильность получаемых иммобилизованных препаратов; возможность получения технологически удобных форм (гранул, мембран, листов и т. д.); носитель не должен затрагивать активность фермента или ферментативные системы клетки при реализации конкретной технологии, необходимо исключить нежелательные воздействия носителя (токсичность, температура, стресс и т. д.); надежное удержание фермента и клетки носителем; материал носителя не должен препятствовать обеспечению иммобилизованного препарата субстратами, газообмену и отводу продуктов жизнедеятельности; высокая гидрофильность, обеспечивающая возможность реакций в водной среде; дешевизна носителя и простота иммобилизации, т. е. экономическая оправданность. Выполнить все требования крайне сложно, поэтому необходимо находить компромисс между «идеальным» и «реально возможным». Для приближения к оптимальному варианту необходима разработка научно-обоснованных подходов для выбора путей иммобилизации. Выбор путей иммобилизации и материала носителя на эмпирической основе — это надежда на случайную удачу, требующую больших затрат труда, времени и веществ. Поэтому необходимо в этом направлении проведение фундаментальных исследований.Отсутствие носителей, удовлетворяющих одновременно всем требованиям, и разнообразие задач, стоящих перед экспериментаторами, обуславливают широкий набор применяемых для иммобилизации материалов. Для иммобилизации используются как органические, так и неорганические материалы.Существующие в настоящее время органические полимерные носители можно разделить на два класса: природные полимеры и синтетические полимерные носители. В свою очередь класс природных полимеров можно подразделить на группы в соответствии с их биохимической классификацией: полисахаридные, белковые и липидные. Синтетические полимеры также могут быть подразделены на группы, например, в соответствии с химическим строением основной цепи макромолекул: полиметиленовые, полиамидные и полиэфирные носители.Природные носители. Большое значение природных полимеров в качестве носителей для иммобилизации объясняется их доступностью и наличием реакционноспособных функциональных групп (в исходном или модифицированном препарате), легко вступающих в различные химические реакции, а также высокой гидрофильностью. К недостаткам можно отнести неустойчивость к воздействию микроорганизмов, относительно высокую стоимость многих из них.Полисахариды. Наиболее часто для иммобилизации используют целлюлозу, декстран, агарозу и их производные [4, с. 87].Целлюлоза представляет собой поли-1,4-β-D-глюкопиранозил-Dглюкопиранозу: Целлюлоза отличается высокой степенью гидрофильности, а наличие большого количества гидроксильных групп дает возможность ее легко модифицировать путем введения различных заместителей.Препараты целлюлозы для придания им химической устойчивости «сшивают» эпихлоргидрином. Для увеличения механической прочности целлюлозу гранулируют путем частичного гидролиза, в результате которого разрушаются ее аморфные участки. На их место для сохранения прочности между кристаллическими участками вводят химические сшивки. Гранулированная целлюлоза благодаря простоте получения, сравнительно низкой стоимости относится к удобным носителям для иммобилизации ферментов. К недостаткам целлюлозы как носителя можно отнести ее неустойчивость к воздействию сильных кислот, щелочей и окислителей.Гранулированную целлюлозу довольно легко превращают в различные ионообменные производные, которые имеют промышленное значение.К природным аминополисахаридам относится хитин. Его можно рассматривать как целлюлозу, в которой СН2ОН-группа заменена ацетамидным остатком: Хитин — основной компонент наружного скелета ракообразных, насекомых, а также клеточных оболочек некоторых грибов. Это соединение является отходом промышленной переработки креветок и крабов, поэтому доступно в больших количествах при относительно низкой стоимости.Хитин обладает пористой структурой, не растворяется в воде, разбавленных кислотах и щелочах, а также в органических растворителях. Для переведения в реакционноспособную форму он может быть модифицирован глутаровым альдегидом, а также солями тяжелых металлов.Обработка хитина концентрированными растворами щелочей (деацилирование) приводит к образованию хитозана. Хитозан имеет свободные аминогруппы, поэтому может использоваться для ковалентной иммобилизации с помощью бифункциональных реагентов: диальдегиды, диизоцианаты. В отличие от хитина хитозан растворяется в минеральных и органических кислотах, поэтому для иммобилизации он часто применяется в виде растворов (рН 3–7).Полученные препараты иммобилизованных ферментов и других биобъектов на основе хитозана обладают высокой каталитической активностью и устойчивостью к микробному воздействию; наблюдается и повышение термостабильности белков, иммобилизованных на хитозане.Декстран — поли-1,6-α-D-глюкопиранозил-D-глюкопираноза — разветвленный полисахарид из бактериальных источников, содержащий остатки глюкозы, связанные, в основном, 1,6-глюкозидными связями (а также 1,2-, 1,3- и 1,4- связями): Фирмы «Pharmacia» и «Renal» выпускают ряд производных декстрана, содержащих различные функциональные группы (карбоксиметилсефадекс, сульфопропилсефадекс, диэтиламиноэтилсефадекс, диэтил-(2-оксипропил)-аминоэтилсефадекс, молселект).Гели на основе декстрана обладают высокой стойкостью и гидрофильностью (из-за наличия большого количества гидроксильных групп).К группе декстранов можно отнести и крахмал, представляющий смесь полисахаридов, основными компонентами которой являются амилоза — поли-1,4-α-D-глюкопиранозил-D-глюкопираноза и амилопектин — разветвленный полисахарид, состоящий из остатков D-глюкозы, связанной 1,4-α-глюкозидными связями, а в местах разветвлений – 1,6-α- глюкозидными связями.При химической модификации крахмала сшивающими агентами (формальдегид, глиоксаль, глутаровый альдегид) получен новый носитель — губчатый крахмал. Этот носитель обладает повышенной устойчивостью по отношению к ферментам, гидролизующим полисахариды. Введение диэтанол- и триэтаноламинных групп дает возможность применять губчатый крахмал для иммобилизации.Агароза — поли-β-галактопиранозил-3,6-ангидро-α-L-галактопираноза: Агароза широко используется как носитель для иммобилизации. Однако стоимость ее очень высока, поэтому разрабатываются различные методы ее модификации с целью получения легко регенерируемых форм. При охлаждении горячего 2–6 % водного раствора агарозы до температуры ниже 45 ºС образуются прочные крупнопористые гели, представляющие собой сложную смесь из заряженных и нейтральных полисахаридов. Гели на основе агарозы выпускаются под названиями «сефароза» и «биогель А».Агар выделяют из некоторых красных водорослей. Установлено, что он содержит, по крайней мере, два полисахарида: агарозу и агаропектин. Гели агара образуются аналогично агарозным при охлаждении до температуры ниже 38 ºС. После высушивания гель агара превращается в прозрачную пленку, что позволяет использовать для изучения иммобилизованных в геле препаратов оптические методы. К преимуществам агара следует отнести его низкую стоимость, нетоксичность и способность формировать механически прочные гели даже при малых концентрациях в растворе.Улучшить свойства агара можно сшиванием эпихлоргидрином, диэпоксидными агентами и т. д. Сшитый агар с регулируемой проницаемостью устойчив к нагреванию даже в щелочной среде, обладает высокой механической прочностью, а наличие большого количества оксигрупп позволяет легко модифицировать носитель. Это дало основание отдельным исследователям считать агар почти идеальным носителем.Альгиновые кислоты и их соли — это полисахариды бурых морских водорослей, состоящие из связанных β-1,4-связями остатков D-маннуроновой кислоты. Они служат основой при получении альгинатных гелей. В присутствии моновалентных катионов эти полисахариды даже в низких концентрациях образуют вязкий раствор, а в присутствии двухвалентных катионов, особенно Ca2+, наблюдается образование геля. В зависимости от присутствующего катиона эти гели и носят различные названия: натрий альгинатный гель, кальций альгинатный гель и т. д.Характерной особенностью этих носителей является зависимость их растворимости от температуры и рН-раствора. Для иммобилизации биопрепаратов широкое распространение получила система с альгинатом кальция. Выбор этого геля для иммобилизации произошел не случайно: условия включения в гель альгината кальция очень мягкие, полимер можно стерилизовать автоклавированием, и кроме того, процесс иммобилизации обратим, что достигается добавлением агента, связывающего Са2+ (например, ЭДТА или лимонной кислоты). Последнее особенно важно было на начальных этапах исследования, поскольку необходимо было изучать свойства клеток по мере их нахождения в иммобилизованном состоянии.От соотношения концентрации альгината и Са2+ зависит плотность сшивки геля. Стабильность геля возрастает с увеличением концентрации полимера, но при высоких концентрациях альгината масса становится вязкой, что может затруднять процесс образования гранул. Поэтому необходимо подобрать такие условия, которые бы позволили получать стабильный гель.Гепарин представляет собой кислый полисахарид, содержащий чередующие звенья сульфатированной D-глюкуроновой кислоты (или L-идуроновой) и сульфатированного глюкозамина (или N-ацетилглюкозамина): Гепарин успешно применяется для получения водорастворимых препаратов иммобилизованных ферментов, используемых в медицине для введения in vivo.к-Каррагинан. Каррагинаны представляют собой гетерогенные полисахариды, содержащие главным образом эфиры α-D-галактопиранозилсерной кислоты. к-Каррагинан — это нерастворимая фракция, которую получают при добавлении ионов Са2+ к водному экстракту каррагинана. При нагревании он растворятся, а при последующем охлаждении образует гель. Температура образования и качество геля зависят как от концентрации полимера, так и от количества присутствующих в растворе катионов (например, K+, NH4+, Ca2+ или Ba2+).Белки используют в качестве носителей для иммобилизации ферментов. Известно, что многие ферменты в клетке функционируют в тесном контакте с липидами и белками. Поэтому полагают, что изучение поведения ферментов, иммобилизованных на белковых матрицах, позволит также лучше понять закономерности функционирования ферментов in vivo. С точки зрения практической значимости важными свойствами этих носителей являются высокая вместимость по отношению к ферментам и способность к биодеградации, а также возможность применения большинства из них (благодаря фибриллярной природе) в виде тонкой пленки (толщина 80 мкм).Иммобилизацию на белковых носителях можно проводить как в присутствии, так и отсутствии сшивающих агентов. К недостаткам белков как носителей, в частности для медицинских препаратов, используемых in vivo, следует отнести высокую иммуногенность (исключение составляют коллаген и фибрин).Наиболее часто в качестве носителей применяют структурные белки, такие как кератин, фиброин, коллаген; двигательные белки, в частности миозин, а также транспортные белки, например сывороточный альбумин.Коллаген — фибриллярный белок группы склеропротеидов, основной компонент хрящей и сухожилий, обладает высокой прочностью на разрыв. Особенностью этого белка является высокая гидрофильность. Легкость выделения коллагена и наличие большого числа групп для связывания ферментов делают возможным его использование в качестве носителя. Коллаген используют и в виде модифицированных производных. Например, блокированием амино- или карбоксильных групп изменяют поверхностный заряд носителя и, соответственно, гидрофильность, с помощью сшивающих аминов получают сжатую микроструктуру. Наиболее часто коллаген употребляется в азидной форме. В результате длительной обработки коллагена кипящей водой, в ходе чего гидролизуются некоторые его ковалентные связи, получают желатин. Ценностью этого носителя, обладающего гелевой структурой, является нетоксичность, легкость биодеградации, что позволяет применять его в фармацевтической и пищевой промышленностях.Другим представителем фибриллярных белков группы склеропротеидов является кератин. Из кератина почти полностью состоят шерсть, волосы, роговые покровы, шелк и т. д. Чаще всего кератин получают при переработке перьев. Таким образом, кератин дешев и доступен в больших количествах.Существуют две формы кератина — α и β. α-Кератин характеризуется высоким содержанием цистеина, что способствует иммобилизации препаратов, содержащих SH-группы. β-Кератины характеризуются высоким содержанием глицина и аланина, что способствует образованию вытянутой зигзагообразной полипептидной цепи. Нити β-кератина обладают мягкостью, гибкостью и нерастворимостью, однако по прочности уступают α-кератину.При иммобилизации препаратов на носителях белковой природы необходимо учитывать диффузионные ограничения, определяемые гелевой структурой матрицы.Липиды. Иммобилизация ферментов на природных липидных носителях (конструирование ансамблей белок—липид) может рассматриваться как приближение к живой клетке. Для такой иммобилизации, как правило, используются природные липиды — компоненты биомембран. Обычно липидные носители применяются в виде монослоев на различных поверхностях или бислоев (как правило, сферической формы). Липиды, имеющие хотя бы небольшую полярную «головку», способны образовывать мономолекулярную пленку на границе раздела фаз (вода—воздух, вода—неполярный растворитель). Липидные молекулы в монослое расположены таким образом, что полярные «головки» погружены в водную среду, а углеводные группы направлены в воздух или неполярную среду. Такая пленка способна сорбировать белковые молекулы.Изучение монослоев липидов, содержащих белок, помогает также установить природу взаимодействия липидов и белков в биологической мембране.Липидный монослой можно нанести на твердую подложку (силикагель, сажа и т. д.). В качестве липидной матрицы используют обычно лецитин, фосфатидилэтаноламин и холестерин. Возможность варьировать структуру и ориентацию молекул в липидных слоях достигается подбором полярности носителя и природы используемого растворителя липида. Если липид с молекулами бифильной природы, растворенный в неполярном органическом растворителе (бензол, гептан), адсорбировать на полярном силикагеле, то в монослое липида углеводородные цепи будут ориентированы наружу. При адсорбции липида из полярного растворителя на неполярной графитовой саже можно получить гидрофильный монослой, в котором полярные головки ориентированы в сторону растворителя.В качестве природных носителей используются липосомы. Для приготовления липосом наиболее часто используются фосфатидилхолин, фосфатидилэтаноламин, сфингомиелин и др. Размер и форма липосом зависит от способа их приготовления, а также от таких факторов, как кислотность среды, присутствие неорганических солей и природы используемого липида.Существует три различных типа липосом: мультиламеллярные, моноламеллярные и макровезикулярные. Мультиламеллярные липосомы представляют собой замкнутые упорядочные структуры, состоящие из нескольких концентрических липидных бислоев, отделенных один от другого водной средой. Расстояние между соседними бислоями составляет 7,5 нм, диаметр центрального водного ядра равен 0,15 мкм, а общий диаметр мультиламеллярных липосом колеблется от 1–2 до 50 мкм.Ультразвуковая обработка мультиламеллярных липосом приводит к трансформации их в моноламеллярные. Диаметр таких липосом составляет 20–50 нм.Макровезикулярные липосомы образуются, например, путем слияния малых липосом, индуцируемого ионами Са2+, а также присутствием фосфолипидов с отрицательно заряженными головными группами. Такие липосомы состоят из одного бислоя и имеют диаметр от 60 нм до 100 мкм.Широкое применение липосом как носителей для ферментов и лекарственных препаратов обусловлено простотой получения, легкостью регенерации иммобилизованного материала, а также возможностью использования in vivo благодаря близости свойств этих липидов — носителей и природных биомембран.Синтетические полимерные носители. Огромное разнообразие доступных синтетических полимеров обеспечило их широкое использование в качестве носителей для иммобилизации. Вводя в полимерные молекулы различные функциональные группы, можно в широких пределах варьировать физические свойства носителей и создаваемое ими микроокружение для иммобилизованных препаратов.Синтетические полимеры применяются как для ковалентной иммобилизации, так и сорбционной, а также для получения гелей и микрокапсул.Полимеры на основе стирола являются основой многих промышленных марок ионообменных материалов. Для сорбционной иммобилизации применяются как микропористые, так и макропористые (размер пор 10–1000 нм) материалы. Сополимеры стирола в виде сферических частиц с различными сшивающими агентами можно получить гранульной полимеризацией. Геометрическая структура таких макропористых носителей (размер пор, удельная поверхность) варьирует в широких пределах при изменении количества агента и концентрации растворителя мономеров в реакционной среде. Наиболее часто в качестве сшивающего агента используется дивинилбензол. Пористость сополимеров стирола регулируют полимеризацией в присутствии порообразователей, например добавок, разлагающихся при нагревании с выделением газообразных веществ (NH4Cl).В последние годы стали применяться носители, имеющие макросетчатую, изопористую и гетеропористую структуры. Макросетчатые полистиролы подобны стеклам. Они имеют стабильную структуру пор, не набухают в воде, отличаются повышенной механической прочностью. Получают их эмульсионной сополимеризацией стирола с дивинилбензолом в присутствии осаждающего вещества. Изопористый полистирол образуется при сшивании стирола в дихлорэтане, содержащем n-ксилилендихлорид. Под действием монохлордиметилового эфира и парообразователя получают гетеропористый полистирол с диаметром пор

4. Использование иммобилизованных ферментов

Заключение

Список использованных источников



Содержание

Введение 3

1. Иммобилизованные ферменты и их преимущества 5

2. Основы технологии иммобилизации ферментов 9

2.1. Общие принципы иммобилизации 9

2.2. Методы физической иммобилизации 11

2.3. Микрокапсулирование 16

2.4. Иммобилизация металлохелатным способом 17

3. Носители для иммобилизованных ферментов 22

4. Использование иммобилизованных ферментов 34

Заключение 38

Список использованных источников 39



Введение


Ферменты (энзимы) являются веществами белковой природы, которые используются живыми организмами для катализа многих химических реакций. Все ферменты (в настоящее время их более 3000) разделены на различные классы в соответствии с теми химическими реакциями, которые они катализируют. Каждый класс состоит из подкласса, уточняющего природу субстрата, кофермента или характер превращения.

Источником фермента может служить любой живой объект, поэтому они могут быть как растительного, так и животного происхождения. В настоящее время для получения ферментов и ферментных препаратов используют микроскопические грибы, бактерии и дрожжи [3, с. 4].

Как известно, в клетках ферменты находятся не в растворенной форме, а прикреплены к определенным структурам и локализованы в органеллах. Это связано с тем, что ферменты — нестабильные соединения и при воздействии ряда физических и химических факторов могут инактивироваться.

Иммобилизованными ферментами называют ферменты, искусственно связанные с нерастворимым носителем, но сохраняющие свои каталитические свойства. Иммобилизация — ограничение подвижности молекул ферментов, позволяющие закрепить их активный центр, сохраняя максимальную работоспособность в течение длительного времени, не подвергаясь структурным изменениям.

Иммобилизованные ферменты имеют ряд преимуществ в сравнении со свободными молекулами: такие ферменты представляют собой гетерогенные катализаторы, легко отделяющиеся от реакционной среды, могут использоваться многократно, обеспечивают непрерывность каталитического процесса.

Цель данной работы — изучение важнейших методов иммобилизации ферментов.

Задачи работы:

1) охарактеризовать преимущества иммобилизованных ферментов;

2) изучить основы технологии иммобилизации ферментов — общие принципы иммобилизации, методы физической иммобилизации, микрокапсулирование, иммобилизацию металлохелатным способом;


3) рассмотреть носители для иммобилизованных ферментов;

4) кратко осветить направления использования иммобилизованных ферментов.

Для написания реферата использованы информационные источники, перечень которых приведен в разделе «Список использованных источников».

1. Иммобилизованные ферменты и их преимущества


В современной биотехнологии одно из видных мест принадлежит ферментам. Ферменты и ферментные системы широко используются в различных отраслях промышленности, медицине, сельском хозяйстве, химическом анализе и т. д.

Ферменты — вещества белковой природы и поэтому неустойчивы при хранении, а также чувствительны к тепловым воздействиям. Кроме того, ферменты не могут быть использованы многократно из-за трудностей в отделении их от реагентов и продуктов реакции. Решить эти проблемы помогает создание иммобилизованных ферментов. Начало этому методу было положено в 1916 году, когда Дж. Нельсон и Е. Гриффин адсорбировали на угле инвертазу и показали, что она сохраняет в таком виде каталитическую активность. Сам термин «иммобилизованные ферменты» стал применяться с 1971 года, и означает любое ограничение свободы передвижения белковых молекул в пространстве.

Под иммобилизацией фермента понимается его включение в какую-либо изолированную фазу, которая отделена от фазы свободного раствора, но способна обмениваться с находящимися в последней молекулами субстрата или эффектора. Иными словами, иммобилизация представляет собой включение фермента в такую среду, в которой для него доступной является лишь ограниченная часть общего объема.

Иммобилизация ферментов — это перевод их в нерастворимое состояние с сохранением (частичным или полным) каталитической активности. Вообще, в идеальном случае иммобилизация фермента не должна приводить к потере каталитической активности. Адсорбция — мягкий метод иммобилизации, который, как правило, слабо изменяет каталитическую активность фермента. Наоборот, ковалентное связывание приводит часто к снижению ферментативной активности. Однако инактивацию фермента можно предотвратить, если проводить иммобилизацию в присутствии субстрата, который защищает активный центр [4, с. 87].

Примеры типичных водонерастворимых носителей, используемых для адсорбции и ковалентной иммобилизации ферментов, приведены в таблице 1.



Широкое технологическое применение ферментов долгое время сдерживалось рядом причин, из которых важнейшим являются:

  • трудоемкость отделения ферментов от исходных реагентов и продуктов реакции после завершения процесса, в результате чего ферменты используются, как правило, однократно;

  • неустойчивость (лабильность) ферментов при хранении, а также при различных воздействиях (главным образом тепловых);

  • трудоемкость очистки ферментов и получения их в достаточно активном виде и, как следствие, высокая стоимость активных ферментов.


Таблица 1 – Материалы, используемые для иммобилизации

Адсорбционная иммобилизация

Ковалентная иммобилизация

Окись алюминия

Агароза (сефароза)

Бентонит

Целлюлоза

Карбонат кальция

Декстран (сефадекс)

Гель фосфата кальция

Стекло

Уголь

Сополимеры полиакриламида

Целлюлоза




Глина

Полиаминостирол

Коллаген




Конковалин A-сефарозы





В последнее время определились пути преодоления этих трудностей. Они связаны как раз с получением иммобилизованных ферментов, а также иммобилизованных клеток (микроорганизмов). Открылись принципиально новые перспективы перед прикладной наукой в результате создания иммобилизованных ферментов. Дж. Нельсон и Е. Гриффин в 1916 г. показали, что инвертаза, адсорбированная на угле (т. е. иммобилизованная), сохраняет каталитическую активность. В 20–30-х годах прошлого века работы по получению адсорбции белков и ферментов были продолжены главным образом в практических целях.

Каким образом с помощью иммобилизации удается преодолеть перечисленные выше трудности промышленного использования ферментов?

1. В результате иммобилизации ферменты приобретают преимущества гетерогенных катализаторов, — их можно удалять из реакционной смеси (и отделять от субстратов и продуктов ферментативной реакции) простой фильтрацией. Этим устраняется первый из перечисленных недостатков растворимых ферментов как технологических катализаторов. Более того, появляется возможность перевода многих периодических ферментативных процессов на непрерывный режим, используя колонны или проточные аппараты с иммобилизованными ферментами.


2. Иммобилизованные ферменты более устойчивы к внешним воздействиям, чем растворимые ферменты. Таким образом, возникли перспективы преодоления и второго недостатка — их лабильности.

3. Наконец, принцип иммобилизации был применен не только к ферментам, но и к их субстратам, ингибиторам и кофакторам, т. е. веществам, имеющим избирательное сродство к ферментам. Это позволило создать метод выделения и очистки ферментов, основанный на хроматографии по сродству, или аффинной хроматографии. Тем самым существенно облегчается выделение чистых ферментов, и в настоящее время можно рассчитывать на то, что и третья из отмеченных причин, ограничивающих промышленное применение ферментов, успешно преодолевается.

Иммобилизованные ферменты обладают рядом преимуществ при использовании их в прикладных целях:

1. Гетерогенный катализатор легко отделить от реакционной среды, что дает возможность:

  • остановить в нужный момент реакцию;

  • использовать катализатор повторно;

  • получать продукт, не загрязненный ферментом (важное обстоятельство для пищевых и фармацевтических производств).

2. Использование гетерогенных катализаторов позволяет проводить ферментативный процесс непрерывно, например, в проточных колоннах, и регулировать скорость катализируемой реакции, а также выход продукта путем изменения скорости потока.

3. Иммобилизация или модификация фермента способствует целенаправленному изменению свойств катализатора, в том числе специфичности, зависимости каталитической активности от рН, ионного состава и других параметров среды и, что важно, его стабильности по отношению к различного рода денатурирующим воздействиям.

4. Иммобилизация ферментов дает возможность регулировать их каталитическую активность путем изменения свойств носителя под действием некоторых физических факторов (свет, звук); создаются механо- и звукочувствительные датчики, усилители слабых сигналов и бессеребряные фотографические процессы.

С практической точки зрения иммобилизация ферментов на водонерастворимых носителях очень выгодна, поскольку после завершения ферментативной реакции иммобилизованный фермент может быть выделен и использован повторно. Однако необходимо знать, остается ли иммобилизованный фермент связанным с носителем при различных условиях (рН, температура, присутствие субстрата и продуктов). Убедившись в
прочности связывания фермента с носителем, можно сравнивать свойства свободного и иммобилизованного фермента.

Одним из свойств носителя является максимальная «нагрузка». Под максимальной «нагрузкой» (емкостью) носителя ферментом подразумевается максимальное количество фермента, которое может быть иммобилизовано на определенном количестве носителя. Это очень важный параметр, так как высокая степень нагрузки носителя позволяет уменьшить размеры реактора. Перенасыщение носителя может привести к тесному сближению молекул и к уменьшению активности фермента за счет стерических затруднений при взаимодействии субстрата с активным центром. Однако, ограниченная «нагрузка» носителя может приводить к блокированию свободными молекулами пространства между связанными молекулами фермента.

Иммобилизованные ферменты долговечны и в десятки тысяч раз стабильнее свободных энзимов. Так, происходящая при температуре 65 °С термоинактивация лактатдегидрогеназы, иммобилизованной в 60%-м полиакриламидном геле, замедлена в 3600 раз по сравнению с нативным ферментом. Это обеспечивает высокую экономичность, эффективность и конкурентоспособность технологий, использующих иммобилизованные ферменты.