Файл: Сборник типовых задач содержание введение физические свойства жидкостей 1 Сведения из теории 1 Плотность.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 22.11.2023
Просмотров: 55
Скачиваний: 3
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
избыточного гидростатического давления частица, находящаяся на глубине , может подняться на высоту ,то есть она обладает потенциальной энергией давления равной . Полная потенциальная энергия частицы жидкости весом равна .Удельная потенциальная энергия, т.е. энергия приходящаяся на единицу веса частицы будет соответственно равна:
(2.48)
Аналогично, гидростатический напор является также мерой удельной потенциальной энергии жидкости, но большей по сравнению на величину удельной потенциальной энергии атмосферного давления.
(2.49)
2.2. Примеры решения задач
Рис.2.8.
Пример 1. Определить абсолютное и избыточное гидростатическое давление
в точке А (рис. 2.8), расположенной в воде на глубине , и пьезометрическую высоту для точки А, если абсолютное гидростатическое давление на поверхности .
Решение:
Согласно основного уравнения гидростатики абсолютное гидростатическое давление в точке А определится:
.
Избыточное давление в точке А равно:
Пьезометрическая высота для точки А равна:
Можно отметить, что пьезометром удобно измерять только относительно малые давления, в противном случае требуется большая высота пьезометра, что неудобно в эксплуатации.
Определить эти же величины U – образным манометром, заполненным ртутью. По поверхности раздела ртути и воды давления со стороны резервуара и открытого конца манометра будут одинаковы:
Следовательно, избыточное давление в точке А уравновешивается весом столба ртути высотой над поверхностью раздела :
Находим высоту ртутного столба :
,
где – плотность ртути.
Рис.2.9.
Пример 2. Определить давление в резервуаре (рис. 2.9) и высоту подъема уровня в трубке 1, если показания ртутного манометра .
Решение:
Запишем условия равновесия для ртутного манометра для плоскости
а) со стороны резервуара
б) со стороны манометра ,
тогда
Таким образом, в резервуаре – вакуум, величина которого равна:
Условия равновесия трубки 1
Пример 3.
Рис.2.10.
Определить манометрическое давление в трубопроводе А (рис. 2.10),
если высота столба ртути по пьезометру 25 см. Центр трубопровода расположен на 40 см ниже линии раздела между водой и ртутью.
Решение: Находим давление в точке В. Точка В расположена выше точки А на величину , следовательно, давление в точке В будет равно
.
В точке С давление будет такое же, как в точке В, то есть
.
Определим давление в точке C, подходя, справа
.
Приравнивая оба уравнения, получаем
.
Отсюда манометрическое давление
.
Пример 4.
Рис.2.11.
Определить все виды гидростатического давления в баке с нефтью на глубине (рис. 2.11), если давление на свободной поверхности нефти . Плотность нефти .
Решение: 1. Абсолютное гидростатическое давление у дна
2. Избыточное (манометрическое) давление у дна
3. Избыточное давление создаваемое столбом жидкости
4. Избыточное давление на свободной поверхности
Пример 5. Определить избыточное давление воды в трубе по показаниям батарейного ртутного манометра (рис. 2.12).
Рис.2.12.
Отметки уровней ртути от оси трубы: Плотность ртути , плотность
воды .
Решение: Батарейный ртутный манометр состоит из двух последовательно соединенных ртутных манометров. Давление воды в трубе уравновешивается перепадами уровней ртути, а так же перепадами уровней воды в трубках манометра. Суммируя, показания манометра от открытого конца до присоединения его к трубе получим:
3. ОТНОСИТЕЛЬНЫЙ ПОКОЙ ЖИДКОСТИ
3.1. Сведения из теории
Под относительным покоем понимается такое состояние, при котором в движущейся жидкости отдельные частицы не смещаются одна относительно другой. При этом жидкость перемещается как твердое тело. Само движение жидкости в этом случае можно назвать переносным движением. Для этого состояния характерно постоянство формы объема жидкости. Очевидно, что рассматриваемая масса жидкости будет неподвижна в координатной системе, связанной с движущимся резервуаром.
На жидкость, находящуюся в относительном покое, действуют массовые силы (силы тяжести и силы инерции переносного движения), а из поверхностных – силы давления.
Рассмотрим два частных случая относительного покоя: покой при переносном прямолинейном движении и покой при переносном вращательном движении вокруг вертикальной оси.
3.1.1. Относительный покой при прямолинейном движении на наклонной плоскости
Рассмотрим движение резервуара с жидкостью с постоянным ускорением a по наклонной плоскости, образующей угол a с горизонтальной плоскостью (рис. 3.1).
Жидкость в движущемся резервуаре находится под действием силы давления, силы тяжести и силы инерции переносного движения. Ускорение силы инерции и направлено в сторону, обратную ускорению резервуара a. Результирующий вектор массивных сил определяется диагональю параллелограмма, построенного на ускорениях сил тяжести g и инерции j.
Элемент поверхности равного давления перпендикулярен к диагонали параллелограмма и образует с горизонтом угол b , тангенс, которого равен
(3.1)
Таким образом, поверхности равного давления, образуют семейство параллельных плоскостей с углом наклона к горизонту b .
Необходимо учесть, что если резервуар движется равномерно , то и следовательно и . В этом случае поверхности равного давления представляют семейство горизонтальных плоскостей.
Если резервуар перемещается под действием силы тяжести (сила трения резервуара о плоскость равна 0), то , , , а поверхности равного давления образуют семейство плоскостей, параллельных плоскости скатывания.
Если резервуар перемещается с ускорением, но вертикально ( ), то , а поверхности равного давления образуют семейство горизонтальных плоскостей.
Найдем закон распределения давления в вертикальной плоскости . Учитывая, что система координат перемещается вместе с резервуаром, , а для выбранной плоскости и , уравнение (2.6) примет вид:
. (3.2)
В этом случае .
Тогда
(3.3)
После интегрирования имеем:
(3.4)
Для двух точек 0 и 1 с координатами и имеем:
(3.5)
или
. (3.6)
По аналогии получаем распределение давления в горизонтальной плоскости:
, (3.7)
если , то имеем
, (3.8)
а свободная поверхность имеет угол наклона к горизонту (3.1)
. (3.9)
При свободном падении резервуара и , то есть во всем объеме давление одинаково.
3.1.2 Относительный покой при вращении вокруг вертикальной оси
В этом случае на жидкость действуют силы давления, силы тяжести и силы инерции переносного вращательного движения ускорения массовых сил будут равны:
Дифференциальное уравнение (2.8) примет вид:
(3.10)
После интегрирования, с учетом, что получим:
(3.11)
Уравнение (3.11) является уравнением параболоида вращения, а поверхности равного давления образуют семейство параболоидов вращения, сдвинутых вдоль вертикальной оси. Каждый параболоид характеризуется некоторым значением постоянной С. Для параболоида свободной поверхности принимаем, что при (рис. 3.2) ,
поэтому . Тогда уравнение свободной поверхности примет вид:
(3.12)
или (3.13)
Закон распределения давления по объему жидкости получим из уравнения (2.6), подставив в него соответствующие значения X, Y и Z. После интегрирования получаем:
(2.48)
Аналогично, гидростатический напор является также мерой удельной потенциальной энергии жидкости, но большей по сравнению на величину удельной потенциальной энергии атмосферного давления.
(2.49)
2.2. Примеры решения задач
Рис.2.8.
Пример 1. Определить абсолютное и избыточное гидростатическое давление
в точке А (рис. 2.8), расположенной в воде на глубине , и пьезометрическую высоту для точки А, если абсолютное гидростатическое давление на поверхности .
Решение:
Согласно основного уравнения гидростатики абсолютное гидростатическое давление в точке А определится:
.
Избыточное давление в точке А равно:
Пьезометрическая высота для точки А равна:
Можно отметить, что пьезометром удобно измерять только относительно малые давления, в противном случае требуется большая высота пьезометра, что неудобно в эксплуатации.
Определить эти же величины U – образным манометром, заполненным ртутью. По поверхности раздела ртути и воды давления со стороны резервуара и открытого конца манометра будут одинаковы:
Следовательно, избыточное давление в точке А уравновешивается весом столба ртути высотой над поверхностью раздела :
Находим высоту ртутного столба :
,
где – плотность ртути.
Рис.2.9.
Пример 2. Определить давление в резервуаре (рис. 2.9) и высоту подъема уровня в трубке 1, если показания ртутного манометра .
Решение:
Запишем условия равновесия для ртутного манометра для плоскости
а) со стороны резервуара
б) со стороны манометра ,
тогда
Таким образом, в резервуаре – вакуум, величина которого равна:
Условия равновесия трубки 1
Пример 3.
Рис.2.10.
Определить манометрическое давление в трубопроводе А (рис. 2.10),
если высота столба ртути по пьезометру 25 см. Центр трубопровода расположен на 40 см ниже линии раздела между водой и ртутью.
Решение: Находим давление в точке В. Точка В расположена выше точки А на величину , следовательно, давление в точке В будет равно
.
В точке С давление будет такое же, как в точке В, то есть
.
Определим давление в точке C, подходя, справа
.
Приравнивая оба уравнения, получаем
.
Отсюда манометрическое давление
.
Пример 4.
Рис.2.11.
Определить все виды гидростатического давления в баке с нефтью на глубине (рис. 2.11), если давление на свободной поверхности нефти . Плотность нефти .
Решение: 1. Абсолютное гидростатическое давление у дна
2. Избыточное (манометрическое) давление у дна
3. Избыточное давление создаваемое столбом жидкости
4. Избыточное давление на свободной поверхности
Пример 5. Определить избыточное давление воды в трубе по показаниям батарейного ртутного манометра (рис. 2.12).
Рис.2.12.
Отметки уровней ртути от оси трубы: Плотность ртути , плотность
воды .
Решение: Батарейный ртутный манометр состоит из двух последовательно соединенных ртутных манометров. Давление воды в трубе уравновешивается перепадами уровней ртути, а так же перепадами уровней воды в трубках манометра. Суммируя, показания манометра от открытого конца до присоединения его к трубе получим:
3. ОТНОСИТЕЛЬНЫЙ ПОКОЙ ЖИДКОСТИ
3.1. Сведения из теории
Под относительным покоем понимается такое состояние, при котором в движущейся жидкости отдельные частицы не смещаются одна относительно другой. При этом жидкость перемещается как твердое тело. Само движение жидкости в этом случае можно назвать переносным движением. Для этого состояния характерно постоянство формы объема жидкости. Очевидно, что рассматриваемая масса жидкости будет неподвижна в координатной системе, связанной с движущимся резервуаром.
На жидкость, находящуюся в относительном покое, действуют массовые силы (силы тяжести и силы инерции переносного движения), а из поверхностных – силы давления.
Рассмотрим два частных случая относительного покоя: покой при переносном прямолинейном движении и покой при переносном вращательном движении вокруг вертикальной оси.
3.1.1. Относительный покой при прямолинейном движении на наклонной плоскости
Рассмотрим движение резервуара с жидкостью с постоянным ускорением a по наклонной плоскости, образующей угол a с горизонтальной плоскостью (рис. 3.1).
Жидкость в движущемся резервуаре находится под действием силы давления, силы тяжести и силы инерции переносного движения. Ускорение силы инерции и направлено в сторону, обратную ускорению резервуара a. Результирующий вектор массивных сил определяется диагональю параллелограмма, построенного на ускорениях сил тяжести g и инерции j.
Элемент поверхности равного давления перпендикулярен к диагонали параллелограмма и образует с горизонтом угол b , тангенс, которого равен
(3.1)
Таким образом, поверхности равного давления, образуют семейство параллельных плоскостей с углом наклона к горизонту b .
Необходимо учесть, что если резервуар движется равномерно , то и следовательно и . В этом случае поверхности равного давления представляют семейство горизонтальных плоскостей.
Если резервуар перемещается под действием силы тяжести (сила трения резервуара о плоскость равна 0), то , , , а поверхности равного давления образуют семейство плоскостей, параллельных плоскости скатывания.
Если резервуар перемещается с ускорением, но вертикально ( ), то , а поверхности равного давления образуют семейство горизонтальных плоскостей.
Найдем закон распределения давления в вертикальной плоскости . Учитывая, что система координат перемещается вместе с резервуаром, , а для выбранной плоскости и , уравнение (2.6) примет вид:
. (3.2)
В этом случае .
Тогда
(3.3)
После интегрирования имеем:
(3.4)
Для двух точек 0 и 1 с координатами и имеем:
(3.5)
или
. (3.6)
По аналогии получаем распределение давления в горизонтальной плоскости:
, (3.7)
если , то имеем
, (3.8)
а свободная поверхность имеет угол наклона к горизонту (3.1)
. (3.9)
При свободном падении резервуара и , то есть во всем объеме давление одинаково.
3.1.2 Относительный покой при вращении вокруг вертикальной оси
В этом случае на жидкость действуют силы давления, силы тяжести и силы инерции переносного вращательного движения ускорения массовых сил будут равны:
Дифференциальное уравнение (2.8) примет вид:
(3.10)
После интегрирования, с учетом, что получим:
(3.11)
Уравнение (3.11) является уравнением параболоида вращения, а поверхности равного давления образуют семейство параболоидов вращения, сдвинутых вдоль вертикальной оси. Каждый параболоид характеризуется некоторым значением постоянной С. Для параболоида свободной поверхности принимаем, что при (рис. 3.2) ,
поэтому . Тогда уравнение свободной поверхности примет вид:
(3.12)
или (3.13)
Закон распределения давления по объему жидкости получим из уравнения (2.6), подставив в него соответствующие значения X, Y и Z. После интегрирования получаем: