Файл: I. литературный обзор II. Технологическая часть.doc

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 23.11.2023

Просмотров: 205

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Характерным интервалом температур для процесса является 360—440 оС постепенным повышением от нижней границы к верх­ней по мере отработки катализатора.=

Объемная скорость подачи сырья зависит от качества сырья, применяемого катализатора, давления процесса и получаемых продуктов. При безостаточной переработке вакуумного дистил­лята в моторные топлива она оставляет 0,2—0,5 ч–1, при ведении процесса в режиме легкого гидрокрекинга — до 1 ч–1.

Окислительная регенерация катализатора проводится, как правило, без его выгрузки в токе инертного газа при давле­нии 3–5 МПа, температуре 480-520 °С.

Осернение катализатора выполняется при температуре 150— 350 оС, давлении 2—5 МПа в потоке циркулирующего водород­содержащего газа, содержащего (по объему) 0,5—5,0 % H2S, либо с помощью сераорганических соединений (меркаптаны, сульфиды, дисульфиды), а также легкими сернистыми нефте­продуктами.

Оборудование установок гид­рокрекинга аналогично оборудованию установок гидроочистки нефтяного сырья. Различия имеются в реакторном блоке и обус­ловлены необходимостью работы при более высоком давлении. Реакторы гидрокрекинга имеют диаметр до 4 м, высоту до 30 м и массу до 500 т. Корпус обычно в многослойном горячей исполнении, рулонированный либо собранный из отдельных обе­чаек. В отдельных случаях применяются монолитные аппараты с в пут рент и; плакирующим покрытием из нержавеющей стали для предотвращения сероводородной коррозии.

Внутреннее пространство реактора разделено колосниковыми решетками на несколько секций, куда загружается катализатор. Над каждым слоем катализатора размещается контактно-распределительное устройство для смешения реагирующего по­тока с холодным водородсодержащим газом, его охлаждения и последующего равномерного распределения.

Газосырьевая смесь поступает в реактор через верхний шту­цер, распределяется над слоем катализатора и движется последо­вательно через все секции. Продукты реакции выводятся через нижний штуцер.

В верхней части реактора необходимо предусматривать филь­трующее устройство для улавливания продуктов коррозии и ме­ханических примесей во избежание роста перепада давления и засорения слоя катализатора,

Единичная мощность однопоточного реак­торного блока находится в пределах 300—1000 тыс. т/год по пере­рабатываемому исходному сырью. Мощности отечественных двухпоточных установок гидрокрекинга типа 68-2К и 68-ЗК состав­ляют I млн. т/год по сырью и до 2 млн. т/год по суммарной сырье­вой загрузке с учетом переработки непревращенного остатка. Производительность зарубежных установок находится на таком же уровне.


Наиболее широко в процессе гидрокрекинга применяется алюмокобальтмолибденовый катализатор, в последние годы стали также использовать катализаторы, содержащие никель и вольфрам.

Процесс гидрокрекинга остатков имеет в настоящее время два направления:

1) гидрообессеривание мазутов с целью получения маловязкого и малосернистого котельного топлива или сырья для каталитического крекинга;

2) углубленный гидрокрекинг с целью получения дополнительных ресурсов моторных топлив.

Процесс гидрообессеривания мазутов протекает в сравнительно мягких условиях на стационарном катализаторе. Предварительно мазут можно подвергать деасфальтизации- удалению смолистоасфальтеновых веществ. Технологическая схема процесса, его аппаратурное оформление ничем не отличаются от двухступенчатой установки гидрокрекинга вакуумного газойля.

В зависимости от качества сырья параметры процесса варьируются в следующих пределах:

Температура, оС 315-426

Давление, ат 42-200

Объемная скорость, ч-1 1,0-4,5

Кратность циркуляции водорода, объем/объем 700-1000

В результате процесса сера удаляется на 80%, металлы – на 60–70%, на 60% снижается коксуемость, падает содержание азота и вязкость. Кроме того, образуется небольшое количество газа и бензина.

Кроме установок со стационарным катализатором разработаны также установки с кипящим слоем катализатора, на которых можно перерабатывать более разнообразное остаточное сырье: мазуты, гудроны, тяжелые газойли коксования и каталитического крекинга, смолистые нефти.

Существует процесс гидрокрекинга в трехфазном кипящем слое, где твердая фаза представлена мелкосферическим алюмокобальтмолибденовым катализатором, жидкая фаза – смесью еще непрореагировавшего сырья с уже образовавшимися низколетучими продуктами, а газовая фаза – смесь водорода, сероводорода, аммиака и паров углеводородов. На этой установке можно перерабатывать даже тяжелое остаточное сырье с получением дизельного и котельного топлива. Спад активности катализатора полностью устраняется его регулярным обновлением без изменения и нарушения технологического режима.

Примером процесса с движущимся слоем катализатора может служить установка гидроойл (Н-ойл), где сырье и циркулирующий газ пропускают через слой алюмокобальтмолибденового катализатора восходящим потоком. Вследствие высоких линейных скоростей потока слой катализатора взрыхляется и зерна катализатора приходят в движение. В противоположность системам с кипящим слоем выноса катализатора из реактора с потоком газа и паров продуктов не происходит. Между поверхностью взрыхленного слоя катализатора и расположенным над ним паровым пространством существует резкая граница. Взрыхление катализатора сопровождается уменьшением гидравлического сопротивления слоя, что позволяет снизить размеры зерна катализатора до 0,8мм и обеспечить таким образом более эффективный контакт катализатора и сырья. В реакторе поддерживается температура 430-460

оС, давление 200-210 ат объемная скорость 1ч-1, расход водорода 2% на сырье.

В процессе применяется реактор с двумя реакционными зонами. Съем избыточного тепла реакции и регулирование температуры легко осуществляется при помощи рециркуляции жидкого продукта для каждой зоны. Такая рециркуляция одновременно облегчает задачу поддержания требуемой степени взрыхления слоя катализатора. Для сохранения активности катализатора на определенном уровне часть катализатора периодически выводится из системы и заменяется соответствующими порциями свежего катализатора. Выводится катализатор с низа входной зоны, где он наибольшей степени дезактивируется вредными компонентами сырья. Расход катализатора в зависимости от качества сырья составляет лт 0,0085 до 0,57кг/м3. Истирание катализатора в данном случае незначительно, так как движущиеся частицы обволакиваются пленкой сырья. В результате процесса можно получить до 50-60 вес.% малосернистых фракций с концом кипения 350-360оС, состоящих на ⅔ из парафино-нафтеновых углеводородов.

Широкое развитие гидрогенизационных процессов переработки нефти невозможно без достаточных ресурсов водорода. Основное количество водорода на нефтеперерабатывающих заводах получается в процессе каталитического риформинга. Однако при производстве малосернистых продуктов из сернистых и высокосернистых нефтей, а также при гидрокрекинге нефтепродуктов в больших объемах потребность в водороде не может быть удовлетворена только за счет платформинга. Дополнительно водород может быть получен двояким путем.

Во-первых, водород может быть выделен из водоросодержащих газов, метано- водородной фракции установок газоразделения, отдувочных газов установок гидроочистки и гидрокрекинга. Содержание водорода в этих газах колеблется от 30 до 60 объемн. %. Наиболее перспективные методы получения водорода с концентрацией 96-99 объемн. % – низкотемпературное фракционирование, адсорбция на молекулярных ситах, адсорбция нефтяными фракциями.

Во-вторых, водород можно получить специальными методами: каталитической конверсией углеводородных газов с водяным паром, термическим разложением углеводородных газов, газификацией тяжелого углеводородного сырья.

Установки гидрокрекинга, как правило, строятся большой единичной мощности – 3–4 млн. тонн в год по сырью. Обычно объемов водорода, получаемых на установках риформинга, недостаточно для обеспечения гидрокрекинга, поэтому на НПЗ сооружаются отдельные установки по производству водорода путём паровой конверсии углеводородных газов.


При использовании в качестве сырья прямогонного вакуумного газойля с относительно высоким содержанием серы, азота и полициклических ароматических углеводородов катализатор при работе в одну ступень быстро отравляется и теряет активность. Поэтому необходимо предварительно подготавливать сырье, т.е. проводить процесс в две ступени.

Вакуумный газойль, выделенный из нефти месторождения Танатар отличается невысоким содержанием серы, азота и полициклических ароматических углеводородов. Следовательно, для получения топлива из вакуумного газойля нефти Танатара выбираем одноступенчатый гидрокрекинг на алюмокобальтмолибденовом катализаторе.

Технологический режим процесса одноступенчатого гидрокрекинга вакуумного газойля:

Температура, оС

на входе в реактор 400–410

в сепараторе 50

Давление в реакторе, ат 50

Объемная скорость, ч–1 1

Кратность циркуляции водорода, объем/объем 600

Содержание водорода в циркулирующем газе

на входе в реактор, объемн. % 75

Тепловой эффект реакции, ккал/кг сырья 30–60

Пробег между регенерациями, ч 2000

2.3. Описание технологической схемы установки
Технологическая схема одноступенчатого гидрокрекинга вакуумного газойля приведена на рис. 2.3.

Вакуумный газойль подается сырьевым насосом (1) на смешение с циркулирующим водородсодержащим газом, который нагнетается компрессором (18). Газо-сырьевая смесь нагревается в теплообменнике (5) и печи (2) до температуры реакции. Нагретое и частично испаренное сырье вместе с циркуляционным газом поступает сверху в реактор (3), выходит снизу, далее поступает сверху в реактор (4) и выходит снизу. В каждом из реакторов катализатор укладывается слоями на специальных решетках. Между слоями в реакторы подводится холодный циркулирующий водород с целью отвода избыточного тепла реакции.

Выходящая из реактора смесь циркуляционного газа и продуктов реакции охлаждается в теплообменнике (5), холодильнике (6) и поступает в сепаратор высокого давления (7). Здесь происходит отделение циркуляционного водородсодержащего газа от продуктов реакции, находящихся в жидкой фазе. Продукты реакции с низа сепаратора (7) под собственным давлением поступают в погоноразделительную часть установки, состоящую из атмосферной колонны (9), вакуумной колонны (12) и сопутствующей аппаратуры и оборудования. Циркуляционный газ отмывается от сероводорода в растворе моноэтаноламина и поступает на прием компрессора (18). Компрессор вновь подает газ на смешение с сырьем. Поскольку в реакторе происходит обеднение циркуляционного газа водородом и обогащение его метаном, этаном и пропаном, выделяющимися при реакциях гидрокрекинга, содержание водорода в циркуляционном газе после реактора становится ниже допустимых пределов. Поэтому часть циркуляционного газа из системы выводится (отдувается) и заменяется водородом с установки риформинга или со специальной установки получения водорода.

Высокий тепловой эффект реакции приводит к разогреву реакционной смеси и катализатора, что нежелательно, так как разогрев алюмокобальтмолибденового катализатора выше 435 оС ведет к усиленному коксообразованию. По этой причине приходится вводить непосредственно в реакторы охлаждающий агент – циркулирующий водородсодержащий газ или смесь этого газа и дизельной фракции, получаемой на установке. При охлаждении реакционной смеси только водородсодержащим газом его расход чрезмерно велик