ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.11.2023
Просмотров: 62
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Лекция 6
КОМПЛЕКСОНОМЕТРИЯ (ХЕЛАТОМЕТРИЯ)
Характеристика метода
В последнее время в заводских и научно-исследовательских лабораториях широко применяют методы анализа, основанные на использовании реакций, которые сопровождаются образованием комплексных соединений катионов с органическими реактивами — комплексонами. Образующиеся соединения называют внутрикомплексными (клешневидными, хелатными) солями.
Понятие о комплексонах. Комплексонами обычно называют органические соединения, представляющие собой производные аминополикарбоновых кислот. Простейший комплексон — нитрилотриуксусная кислота (НТА, комплексон I, сокращенно H3Y):
Наибольшее значение имеет четырехосновная этилендиаминтетрауксусная кислота (ЭДТУ, комплексон II, сокращенно H4Y):
Комплексоны наряду с карбоксильными группами (—СООН) содержат аминный азот (≡≡ N). Благодаря такому строению эти соединения отличаются мульти (поли) дентатностью, т. е. способностью образовывать сразу несколько координационных связей с ионами металлов-комплексообразователей.
На практике обычно применяют двунатриевую соль этилендиамин-тетрауксусной кислоты (ЭДТА, Na-ЭДТА, комплексон III или трилон Б, сокращенно Na2H2Y):
ЭДТА образует со многими катионами устойчивые малодиссоциированные растворимые в воде внутрикомплексные соли, построенные по типу известной комплексной соли диметилглиоксимата никеля.
С некоторыми ионами металлов-комплексообразователей комплексоны образуют настолько устойчивые слабые электролиты, что обычными качественными реакциями невозможно доказать присутствие данного катиона в растворе этого комплексного соединения.
Реакции между комплексоном и ионами металлов-комплексообразователей протекают стехиометрически, т. е. в строго эквивалентных отношениях; это обстоятельство открывает широкие возможности применения комплексонов для количественного определения многих катионов, в том числе кальция, цинка, меди алюминия, индия и др.
Применение комплексонов в аналитической химии.
Комплексоны имеют ряд характерных особенностей:
1) хорошо растворимы в воде и некоторых других растворителях;
2) легко реагируют со многими катионами металлов (и в том числе с катионами щелочноземельных металлов, не образующих, как правило, комплексных соединений с другими комплексующими реагентами) с образованием растворимых в воде устойчивых комплексных соединений;
3) некоторые обладают избирательным действием по отношению к тем или иным катионам.
Указанные особенности комплексонов обусловили широкое применение их в качестве титрантов в новой области аналитической химии, называемой комплексонометрией, и в качестве маскирующих агентов.
Известно большое число методов маскировки ЭДТА и другими комплексонами щелочноземельных, тяжелых, редких и рассеянных металлов, мешающих определению других ионов. Например, ЭДТА маскирует катионы многих металлов, мешающих определению бериллия титриметрическими, фотометрическими, спектрофотометрическими, экстракционно-фотометрическими и другими методами.
Использованию комплексонов в качестве маскирующих агентов способствовало то обстоятельство, что комплексонаты металлов имеют различные константы нестойкости (рКнест) и образуются при определенных значениях рН растворов.
Комплексонометрическое титрование. Комплексоны широко используются для комплексонометрического титрования многих катионов и анионов (косвенным методом). При этом используют метод прямого и обратного титрования. Впервом случае титрование ведут при определенном значении рН стандартным раствором ЭДТА. Точку эквивалентности устанавливают с помощью индикаторов, представляющих собой органические красители, образующие с катионами окрашенные комплексные соединения (металл-индикаторы).
При титровании ЭДТА такого окрашенного комплексного соединения оно постепенно разлагается вследствие образования нового более прочного внутрикомплексного соединения катиона с комплексоном. В точке эквивалентности первоначальный цвет комплексного соединения, образуемого, индикатором с определяемым катионом, исчезает и появляется окраска, свойственная свободномуиндикатору.
При" обратном методе титрования к анализируемому раствору прибавляют отмеренный объем стандартного раствора ЭДТА, избыток которого оттитровывают стандартным раствором соли цинка (или другого металла) в присутствии металл-индикатора, реагирующего на ионы цинка (или ионы другого металла).
Таким образом, комплексонометрия представляет собой титримет-рический метод анализа, основанный на использовании реакций ионов металлов-комплексообразователей с комплексонами, сопровождающихся образованием устойчивых малодиссоциированных растворимых в воде внутрикомплексных (клешнеевидных) солей.
При титровании ЭДТА солей металлов-комплексообразователей протекают следующие реакции в заключительной стадии определения;
Na2H2Y ⇆ 2Na+ + H2Y2 ‑
Me2+(Ca2+) + H2Y2 ‑ →MeY2 ‑ + 2H+
Me3+(ln3+) + H2Y2 ‑ →MeY ‑ + 2H+
Me4+ (Тh4+) + H2Y ‑ →MeY + 2H+
Согласно приведенным уравнениям, 1 моль реагирующих с Na-ЭДТА-катионов, независимо от их степени окисления, связывает 1 моль Na-ЭДТА.
Типы реакций, используемых при комплексонометрическом титровании. В комплексонометрии применяют реакции разнообразного типа.
-
Реакции непосредственного взаимодействия ионов металла ком-плексообразователя с комплексоном; например, реакции, применяемые для определения ионов цинка в аммиачной буферной среде или ионов кальция в среде КОН и т. д. в присутствии индикатора, реагирующего на изменение рМе аналогично тому, как кислотно-основной индикатор реагирует на изменение рН раствора:
-
Zn2+ + H2Y2 ‑
pH = 10
NH3 + NH4Cl
ZnY2‑ + 2H+
-
Реакции взаимодействия избытка комплексона со стандартным раствором сульфата цинка, магния, железа (III) и т. п.; например, реакции, используемые для определения алюминия (при рН = 5 ацетатный буферный раствор), при котором комплексон прибавляют в титруемый раствор в избытке (а), а затем избыток реагента оттитровывают стандартным раствором (б):
-
Al3+ + n tH2Y2 ‑
pH = 5
AlY ‑ +2H+ + (n – 1)H2Y2 ‑
(а)
(n – 1) Zn2+ + (n – 1) H2Y2 ‑
pH = 10
(n – 1) Zn Y2 ‑ +2H+
(б)
3. Реакции взаимодействия заместителей с определяемым элементом, завершаемые титрованием выделившихся ионов заместителя стандартным раствором ЭДТА.
4. Реакции кислотно-основного титрования, при которых замещенные ионы водорода оттитровывают стандартным раствором сильного основания в присутствии кислотно-основного индикатора (а) или иодометрическим методом (б):
| Me2+ + H2Y2 ‑ →MeY2 ‑ + 2H+ | (a) | |
2Н+ + 2ОН ‑ | м етиловый красный | 2Н2О | |
ЗМе2++ 3H2Y2 ‑ + IO ‑ + I ‑ → 3MeY2 ‑ + ЗН2О + 3I2 | (б) |
Выделившийся иод оттитровывают тиосульфатом:
6S2O32 ‑ + 3I2 →3S4О62 ‑ + 6 I ‑
Другие типы комплексонов. К числу новых комплексующих реагентов относятся фосфорорганические комплексоны, являющиеся производными аминоалкилфосфоновых кислот. Например:
Этилендиаминтетраметилфосфоновая кислота (ЭДТФ)
[(HO)2P(O)CH2]2N—CH2—CH2—N[CH2P (О) (ОН)2]2
и этилендиамин - N,N' - диуксусная - N, N' - диметилфосфоновая кислота
(ЭДУФ)
-
HOOCCH2
CH2COOH
╲+
+╱
NH—CH2—CH2—NH
╱
╲
Н2О3РСН2
СН2РО3Н2
Аминоалкилфосфоновые кислоты обладают комплексующими свойствами благодаря протонно-донорным функциям кислотных групп и наличию аминных атомов азота, склонных к образованию клешневидных соединений. Свойства этих комплексонов настолько разнообразны, что они дают возможность проводить дифференцированные определения в смесях.
Например, этилендиаминдиизопропилфосфоновая кислота (ЭДДИФ) не образует комплексов с ионами щелочноземельных металлов. Это позволяет комплексонометрически определять катионы элементов первого переходного периода в присутствии катионов щелочноземельных металлов.
Строение образуемых внутрикомплексных солей, Анион этиленди-аминтетрауксусной кислоты как четырехосновной кислоты, содержащей четыре подвижных иона водорода и два атома азота с основными свойствами, обладает всего шестью атомами, которые участвуют в качестве лигандов при построении пятичленных циклов внутрикомплексных соединений. Классическими примерами такого типа соединений являются:
гликоколят меди
диметилглиоксимат никеля
Внутрикомплексные соли образуются во всех случаях, когда ионы металла-комплексообразователя, с одной стороны, замещают активные атомы водорода функциональных групп органического соединения, а с другой стороны, — взаимодействуют с какими-либо группами, способными сочетаться с данным ионом координационной связью.
Примерами групп, содержащих ионы водорода, которые способны замещаться на ионы металлов, и взаимодействующих с ионами металла-комплексообразователя за счет главной валентности служат, карбоксильная —СООН, сульфоксильная —SO3H, оксимная =NOH, гидроксильная —ОН и другие группы.
Примерами групп, соединяющихся с ионами металла-комплексо-образователя координационной (донорно-акцепторной) связью, служат: аминогруппа —NH2, иминогруппа =NH, оксимная группа =NOH, карбонильная =СО, тиоэфирная —S— и некоторые другие.
В комплексонах группами, взаимодействующими с ионами металла-комплексообразователя за счет главной валентности, являются—СООН-группы, а побочной валентности — третичные аминогруппы.
Внутрикомплексные соли с ЭДТА образуются, с одной стороны, за счет замещения ионами металла-комплексообразователя активных атомов водорода карбоксильных групп, с которыми он соединяется главными валентностями, а с другой стороны, — взаимодействия с атомами азота, способными сочетаться с данным ионом металла-комплексообразователя посредством побочной (координационной) валентности.