Файл: "Кинематика движения".docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 30.11.2023

Просмотров: 90

Скачиваний: 5

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Министерство науки и образования Российской Федерации

Федеральное государственное бюджетное учреждение высшего образования

"Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых"

(ВлГУ)
Институт машиностроения и автотранспорта

Кафедра "Технология машиностроения"

РЕФЕРАТ

по дисциплине "Теоретическая механника"

на тему "Кинематика движения"


Выполнил

студент группы С-422

Корниенко Ю.В

Проверил

Беляев Б.А


Владимир 2023

Содержание
Введение...................................................................................................................3

Вектор положения...................................................................................................4

Траектория движения..............................................................................................7

Скорость и ускорение движения..........................................................................11

Относительность скорости движения..................................................................15

Система координат................................................................................................16

Заключение.............................................................................................................22

Список использованной литературы и источников...........................................23

Введение
Кинематика - это раздел физики, посвящённый математическому описанию движения без анализа причин, приводящих к его возникновению или изменению. Причиной изменения или возникновения движения является сила, а сила по II-у закону Ньютона связана с массой. Поэтому для того, чтобы исключить из рассмотрения силу достаточно не рассматривать массу. При этом кроме силы из рассмотрения выпадают многие механические понятия: импульс, энергия, момент импульса. А что остаётся, то и рассматривается в кинематике. Таким образом, кинематику можно было бы назвать механикой без массы.

Самый простой объект, способный двигаться - это материальная точка: тело, размеры которого пренебрежимо малы в условиях данной физической задачи. Движением материальной точки называется смена её положения с течением времени. Поэтому первое кинематическое понятие, с которым мы сталкиваемся - это положение.

1. Вектор положения
Положение чего угодно невозможно задать само по себе. Всё находится относительно чего-то. Значит, мы должны сначала установить начало отсчёта (точку О), а это невозможно сделать по-другому, кроме как поставив туда какое-либо материальное тело (тело отсчёта). И от этого «главного» тела уже можно проводить геометрические векторы, соединяющие начало отсчёта с тем или иным положением материальной точки.


Геометрическим вектором называется направленный отрезок, соединяющий положения двух материальных точек.

Геометрический вектор, соединяющий тело отсчёта с материальной точкой, называется вектором положения материальной точки.

При задании положения материальной точки относительно тела отсчёта последнее по определению считается неподвижным. Поэтому все возможные векторы положений начинаются из одной точки и называются радиус-векторами .

Совокупность всех возможных радиус-векторов образует пространство.

Смена начала отсчёта приводит к изменению всех радиус-векторов. Каким образом? Ответ зависит от системы постулатов, которыми мы собираемся пользоваться. Классическая механика, которую мы в основном и изучаем, использует постулаты Галилея-Ньютона.

Если положение материальной точки М относительно тела отсчёта в точке О обозначить , относительно другого тела отсчёта в точке О' обозначить , а геометрический вектор, соединяющий точки О и О', обозначить , то наблюдатель в точке О будет видеть три геометрических вектора: , и .

Пусть другому наблюдателю в точке О' нет дела ни до чего, кроме материальной точки М. В дальнейшем системе отсчёта с нелюбопытным наблюдателем будет отводиться «второстепенная» роль. В противовес этому система с наблюдателем, который видит всё, будет считаться «основной». В общем, наблюдатель О' видит только один вектор . Как соотносится геометрический вектор , видимый в пространстве

О' с геометрическим вектором , видимым в пространстве О? Ответ на этот вопрос даёт первый постулат Галилея: геометрические векторы в разных системах отсчёта одинаковы. Т.е. . Тогда предыдущий рисунок можно переделать так:


И правило сложения векторов по треугольнику позволяет записать соотношение между тремя векторами:
.
В соответствии с этим соотношением можно находить положения в «основной» системе отсчёта, зная их во «второстепенной». Такое преобразование радиус-векторов будем называть обратным преобразованием Галилея. Соответственно, прямое преобразование позволяет находить положения во «второстепенной» системе отсчёта, зная их в «основной»:

В дальнейшем какая-либо величина в «основном» пространстве будет называться «абсолютной», во «второстепенном» пространстве - «относительной», а та, через которую они связаны, - переносной. Значит

  • -«абсолютный» радиус-вектор;

  • -«относительный» радиус-вектор;

  • - переносный радиус-вектор.

Итак, в соответствие с первым постулатом Галилея смена начала отсчета приводит к изменению пространства, которое описывается преобразованием Галилея. Это означает, что пространство относительно.

2. Траектория движения
Используя понятие радиус-вектора, движение можно описать функциональной зависимостью , где t - время. Поскольку положение относительно, то и движение относительно. Относительны и все понятия, связанные с ним. Первым из таких понятий мы рассмотрим траекторию.

Траекторией называется совокупность положений, пройденных телом в процессе движения.


Тело не может в один и тот же момент времени находиться в разных положениях. Поэтому траектория представляет собой линию, и при этом линию непрерывную. В зависимости от формы траектории различают прямолинейное и криволинейное движение. Если криволинейная траектория лежит в одной плоскости, то движение называется плоским.

Если траектория представляет собой пространственную кривую, то в каждой точке траектории можно ввести понятие соприкасающейся плоскости.

Соприкасающейся плоскостью в какой-либо точке траектории М называется предельное положение плоскости, проходящей через три точки N, M, P этой траектории, когда точки N и P неограниченно приближаются (стремятся) к точке М.

Через три точки, не лежащие на одной прямой можно прости окружность и при том единственную. Поэтому для любой точки криволинейной траектории можно ввести понятие соприкасающейся окружности.

Соприкасающейся окружностью в какой-либо точке траектории М называется предельная окружность, проходящая через три точки N, M, P этой траектории, когда точки N и P неограниченно приближаются (стремятся) к точке М.



Центром и радиусом кривизны траектории в точке М называется центр и радиус кривизны окружности, соприкасающейся с траекторией в точке М. Очевидно, что в случае пространственной траектории соприкасающаяся окружность лежит в соприкасающейся плоскости. Прямолинейную траекторию можно считать траекторией с бесконечным радиусом кривизны.

Орт - это вектор, не обладающий физической размерностью (безразмерный), модуль которого равен единице. Любой вектор можно представить как произведение модуля на орт. Например, радиус-вектор:

Значит, орт любого вектора равен частному от деления вектора на его орт:
.
Нормалью траектории в точке М называется орт, направленный из точки М в центр кривизны траектории в точке М.

Ортом касательной
в точке М называется орт, касательный к соприкасающейся окружности в точке М и направленный по движению.



Ясно, что .

Перемещением называется вектор изменения положения или вектор разности между последующим положением и предыдущим:

В случае, если ни один отрезок траектории не проходился материальной точкой дважды, то путь или путевая координата S(t) - это длина траектории от точки начала движения к данному моменту времени.

Отметим две точки на траектории: M с радиусом-вектором и N с радиусом-вектором .

Тогда для перемещения и приращения пути DS всегда справедливо:


(равенство выполняется в случае прямолинейной траектории). При этом

В случае криволинейной траектории элементарным перемещением и приращением пути dS называются такие, для которых с заданной наперёд точностью выполняется

Очевидно, что
,

т.е. .

3. Скорость и ускорение движения
Средней скоростью движения называется отношение перемещения к промежутку времени, в течение которого произошло перемещение: