Добавлен: 30.11.2023
Просмотров: 92
Скачиваний: 5
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
в соответствие с выражением скалярного произведения в декартовой системе.
Существуют традиционные обозначения декартовой СК.
Таким образом, разложение радиус-вектора в декартовой СК будет иметь вид:
.
Векторную функцию движения можно заменить тремя скалярными зависимостями, которые называются законами движения: x(t), y(t), z(t). Законы движения содержат всю информацию о движении. Т.е. если известны законы движения, то можно ответить на любой вопрос, касающийся движения материальной точки.
Таким образом, проекции вектора скорости равны производным соответствующих законов движения.
.
Таким образом, проекции вектора ускорения равны вторым производным законов движения.
А как найти касательное и нормальное ускорения? Они являются результатом разложения вектора полного ускорения по направлениям касательной и нормали:
.
Касательный орт и орт нормали являются осями двумерного ортогонального базиса. Т.е. алгебраическое значение касательного ускорения представляет собой проекцию полного ускорения на орт :
.
Но касательный орт можно выразить через вектор скорости:
.
Следовательно,
.
Тогда легко получить:
.
А найдя нормальное ускорение, легко найти радиус кривизны:
Заключение
Подведем некоторые итоги. Материальная точка представляет собой ключевую физическую модель. На примере этой модели рассматриваются очень многие физические явления. Описав движение материальной точки, можно затем перейти и к описанию движения твердого тела, но не наоборот.
Основными понятиями кинематики материальной точки являются понятия положения точки, ее скорости и ускорения. Но все эти понятия не имеют смысла вне системы отсчета, включающей в себя систему координат и часы.
Важнейшую роль в кинематике материальной точки играют векторная алгебра и принцип относительности движения.
Сложное движение материальной точки всегда можно разложить на составляющие, причем не однозначно: по координатам, на касательное и нормальное движение, прямолинейное и вращательное.
Литература
Существуют традиционные обозначения декартовой СК.
Ось | Обозначение координаты | Обозначение орта |
1 | r1=х | |
2 | r2=у | |
3 | r3=z | |
Таким образом, разложение радиус-вектора в декартовой СК будет иметь вид:
.
Векторную функцию движения можно заменить тремя скалярными зависимостями, которые называются законами движения: x(t), y(t), z(t). Законы движения содержат всю информацию о движении. Т.е. если известны законы движения, то можно ответить на любой вопрос, касающийся движения материальной точки.
-
Скорость.
Таким образом, проекции вектора скорости равны производным соответствующих законов движения.
-
Ускорение.
.
Таким образом, проекции вектора ускорения равны вторым производным законов движения.
А как найти касательное и нормальное ускорения? Они являются результатом разложения вектора полного ускорения по направлениям касательной и нормали:
.
Касательный орт и орт нормали являются осями двумерного ортогонального базиса. Т.е. алгебраическое значение касательного ускорения представляет собой проекцию полного ускорения на орт :
.
Но касательный орт можно выразить через вектор скорости:
.
Следовательно,
.
Тогда легко получить:
.
А найдя нормальное ускорение, легко найти радиус кривизны:
Заключение
Подведем некоторые итоги. Материальная точка представляет собой ключевую физическую модель. На примере этой модели рассматриваются очень многие физические явления. Описав движение материальной точки, можно затем перейти и к описанию движения твердого тела, но не наоборот.
Основными понятиями кинематики материальной точки являются понятия положения точки, ее скорости и ускорения. Но все эти понятия не имеют смысла вне системы отсчета, включающей в себя систему координат и часы.
Важнейшую роль в кинематике материальной точки играют векторная алгебра и принцип относительности движения.
Сложное движение материальной точки всегда можно разложить на составляющие, причем не однозначно: по координатам, на касательное и нормальное движение, прямолинейное и вращательное.
Литература
-
Мякишев Г.Я. Физика – 10. Механика. – М.: Дрофа. 2002. -
Мякишев Г.Я., Синяков А.З. Физика – 10. Молекулярная физика. Термодинамика. – М.: Дрофа. 2002. -
Мякишев Г.Я., Синяков А.З., Слободков Б.А. Физика – 10–11. Электродинамика. – М.: Дрофа. 2002. -
Мякишев Г.Я., Синяков А.З. Физик – 11. Колебания и волны. – М.: Дрофа. 2002. -
Демков В.П., Третьякова О.Н. В помощь поступающим в ВУЗы. Физика. Механика. – М.: Издательство МАИ, 1996. -
Калашников Н.П., Смондырев М.А. Основы физики. Т.1. М.: Дрофа, 2003 -
Калашников Н.П., Смондырев М.А. Основы физики. Упражнения и задачи. М.: Дрофа, 2004. -
Касаткина И.Л. Репетитор по физике. Т.1. Ростов н/Д: Феникс, 2002. -
Новодворская Е.М., Дмитриев Э.М. Сборник задач по физике с решениями для втузов. М.: ООО Издательство «Мир и Образование», 2003.