Файл: 12. Основы теории четырехполюсников.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 11.12.2023

Просмотров: 88

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.




В этом случае величина Ас показывает ослабление абсолютных значений напряжения и тока.

Единица измерения отношений величин в масштабе натуральных логарифмов называется непером (сокращенно Нп).

Ослаблению в 1 Нп соответствует уменьшение мощности в е2 = = 7,39 раза (так как при имеем S1/S2 = e2), а в симметричном четырехполюснике - уменьшение напряжения и тока в е = 2,718 раз (так как при



На практике принято вычислять и измерять ослабление в других единицах - белах (сокращенно Б). Ослаблению в 1 Б соответствует уменьшение мощности в 10 раз, ослаблению 2 Б - в 100 раз и т. д. Вместо формулы (12.25) в этом случае используют формулу



Бел достаточно крупная единица измерения. Вместо нее обычно применяют в 10 раз меньшую единицу - децибел (сокращенно дБ). Поскольку 1 Б = 10 дБ, то



Для симметричных четырехполюсников вместо (12.26) удобно пользоваться формулой



Между неперами и децибелами существует связь: 1 Нп = 8,7 дБ; 1 дБ = 0,115 Нп.

Пример. Несимметричный и симметричный четырехполюсники включены согласованно. Мощность на выходе первого из них уменьшается по сравнению с мощностью на входе в 1000 раз, на выходе второго по сравнению с его входом - в 10000 раз. Определим характеристические (собственные) ослабления четырехполюсников.

Характеристическое ослабление по мощности для несимметричного четырехполюсника согласно формуле (12.25) составляет Ас = 10 lg 1000 = 30 дБ, а для симметричного - Ас = 10 lg 10000 = 40 дБ. Кроме того, для симметричного четырехполюсника можно указать характеристическое ослабление по напряжению и току. В соответствии с (12.25) оно равно 20 lg 10000 = 80 дБ. Второе слагаемое в формуле (12.24)



учитывает изменение начальных фаз напряжений и токов при передаче энергии через согласованно включенный четырехполюсник и носит название характеристической (собственной) фазы или фазовой постоянной четырехполюсника.


Преобразование (12.21) для симметричного четырехполюсника приводит к характеристической (собственной) фазовой постоянной, равной разности фаз входного и выходного напряжений или токов:



Измеряется фазовая постоянная в радианах (сокращенно рад) или градусах (сокращенно град).

Величины Zc1, Zc2 и Гc образуют систему характеристических (собственных) параметров четырехполюсника. Она полностью описывает пассивный четырехполюсник.

Связь с другими системами параметров. Вычисление характеристических параметров по апараметрам осуществляется с помощью формул (12.17), (12.22), а по параметрам XX и КЗ - с помощью формул (12.18) и (12.23). Установим обратные соотношения, т. е. выразим апараметры и параметры XX и КЗ через характеристическое.

Из (12.22) следует:



Воспользовавшись формулой Эйлера, запишем



Параметр А11 определяется из произведения (12.27) и (12.29)



Чтобы найти параметр А12, необходимо перемножить (12.28) и (12.30)



Остальные два параметра получаются из отношений (12.28) к (12.30) и (12.27) к (12.29):



Уравнения передачи (12.4) в апараметрах после подстановки в них величин из (12.31)-(12.34) превратятся в уравнения передачи в характеристических параметрах:



Для симметричного четырехполюсника, где Zc1 = Zc2 = Zc эти уравнения примут вид



Запись уравнений передачи в форме (12.35) широко применяется для описания цепей с распределенными параметрами (см.13. Цепи с распределенными параметрами).

Формулы (12.13)-(12.15) и (12.31)-(12.34) позволяют выразить параметры XX и КЗ через характеристические параметры. Действительно,




Заметим, что из этих формул легко выводится формула (12.23), приведенная ранее без вывода.

Расчет каскадного согласованного соединения четырехполюсников. При расчете каскадного соединения четырехполюсников ранее был использован матричный метод, в котором матрица А результирующего четырехполюсника определялась произведением матриц А составляющих четырехполюсников. Если четырехполюсники соединены согласованно, то удобнее пользоваться характеристическими параметрами.

На рис. 12.17 показано каскадное согласованное включение трех четырехполюсников с характеристическими постоянными передачи Гc1, Гc2 и Гc3.



Согласование четырехполюсников состоит в том, что характеристические сопротивления со стороны их соединения выбраны равными друг другу, а внутреннее сопротивление генератора и сопротивление нагрузки - равными характеристическим сопротивлениям крайних четырехполюсников. Действительно, крайний справа четырехполюсник нагружен на сопротивление, равное его характеристическому Zc4, значит, входное сопротивление этого крайнего четырехполюсника будет равно характеристическому сопротивлению Zc3 предшествующего четырехполюсника. В свою очередь, входное сопротивление среднего четырехполюсника оказывается равным характеристическому сопротивлению Zc2 крайнего левого четырехполюсника. Следовательно, входное сопротивление крайнего слева четырехполюсника равно Zc1 и согласовано с внутренним сопротивлением генератора.

Аналогичным образом можно провести рассуждения, начиная с левого четырехполюсника.

На рис. 12.17 во избежание путаницы входные сопротивления четырехполюсников со стороны зажимов 2-2' названы выходными сопротивлениями четырехполюсников. Определим характеристическую постоянную передачи результирующего четырехполюсника. Согласно (12.20)



Таким образом, результирующий четырехполюсник, составленный из каскадно и согласованно соединенных отдельных четырехполюсников, имеет характеристические сопротивления, равные характеристическим сопротивлениям крайних четырехполюсников, и оказывается включенным согласованно с генератором и нагрузкой. Его характеристическая постоянная передачи равна сумме характеристических постоянных передачи соединяемых четырехполюсников. Учитывая, что Гс = Ас + jВс, можно записать:




 
12.6. Внешние характеристики четырехполюсника

Рабочее ослабление четырехполюсника. Режим согласованного включения четырехполюсника является наиболее благоприятным для передачи энергии. Однако обеспечить идеальное согласование четырехполюсника с генератором и нагрузкой в широкой полосе частот возможно только в том случае, когда внутреннее сопротивление генератора, сопротивление нагрузки и характеристические сопротивления четырехполюсника являются резистивными. Добиться же равенства комплексных сопротивлений на всех частотах рабочего диапазона, как правило, не удается. Возникающая вследствие этого несогласованность приводит к дополнительным потерям энергии.

Рассмотрим работу четырехполюсника в реальных условиях (см. рис. 12.1), когда Zг № Zс1 и Zн № Zс2. В этом случае Zвх1 № Zг и Zвх2 № Zн. Несогласованность на входе приводит к тому, что часть энергии отражается от входных зажимов четырехполюсника и возвращается к генератору. Изза несогласованности на выходе не вся энергия из четырехполюсника передается нагрузке: часть ее отражается от нагрузки и возвращается обратно в четырехполюсник. Очевидно, какаято часть энергии будет теряться за счет многократного ее отражения на входных и выходных зажимах четырехполюсника.

Чтобы учесть дополнительно возникающие в рабочих условиях потери энергии, пользуются рабочими мерами передачи, которые являются внешними характеристиками четырехполюсника.

К внешним характеристикам относится рабочее ослабление четырехполюсника, которое позволяет сравнить в логарифмических единицах полную мощность S2, выделяемую в нагрузке Zн на выходе четырехполюсника, с полной мощностью S0, которую генератор отдает в нагрузку, согласованную с его внутренним сопротивлением.

Мощность, выделяемая в нагрузке Zн (см. рис. 12.1)



Полная мощность S0 выделяется на сопротивлении, равном внутреннему сопротивлению генератора, т. е. на Zг, и подключенном непосредственно к его зажимам:




Рабочее ослабление четырехполюсника, выраженное в неперах (Нп), подсчитывается по формуле



В (12.36) и (12.37) входят действующие значения Uг и U2, которые могут быть измерены экспериментально, поэтому эти формулы лежат в основе большинства методов измерения рабочего ослабления четырехполюсника.

При теоретических расчетах пользуются другой формулой



где Ac - характеристическое ослабление четырехполюсника; DA1, DA2 - дополнительные ослабления изза несогласованностей на входе и выходе четырехполюсника:



DA3 - дополнительное ослабление за счет многократного отражения энергии от входных и выходных зажимов четырехполюсника:



При согласовании четырехполюсника с генератором Zг = Zc1 и DA1 = DA3 = 0. При согласовании четырехполюсника с нагрузкой Zн = Zc2 и DA2 = DA3 = 0.

Если согласование полное, т. е. Zг = Zc1 и Zн = Zc2, то Ар = Ас, т. е. рабочее ослабление четырехполюсника равно его характеристическому (собственному) ослаблению. Для пассивного четырехполюсника рабочее ослабление больше собственного ослабления вследствие рассогласования на входе и выходе.

Рабочее ослабление является вещественной частью комплексной величины Гр - рабочей постоянной передачи четырехполюсника:



где Вр - рабочая фазовая постоянная.

Передаточные функции четырехполюсника. Передаточной функ-цией нагруженного четырехполюсника (см. рис. 12.1) называется отношение выходной электрической величины к входной электрической величине, т. е. отношение реакции к воздействию (см.7.4. Операторные передаточные функции).

Если входным воздействием считать напряжение генератора с комплексным действующим значением Uг, а реакцией четырехполюсника на это воздействие - напряжение с комплексным действующим значением U2 или ток с комплексным действующим значением I2, то получаются комплексные передаточные функции общего вида: