Файл: Курсовая работа по дисциплине Хранение и переработка продукции растениеводства Технология послеуборочной обработки и хранения.doc

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 151

Скачиваний: 5

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Огромные потери хранящихся зерновых продуктов происходят вследствие размножения в них многих насекомых и частично клещей.

Изучение свойств зерновой массы показало, что по своей природе они могут быть разделены на две группы: физические и физиологические. Многие из свойств каждой группы взаимосвязаны, и только с учетом этих связей может быть наиболее рационально организовано хранение зерновых масс.

Физические свойства зерновой массы.

Для практики хранения представляют интерес следующие физические свойства зерновой массы: сыпучесть и самосортирование, скважистость, способность к сорбции и десорбции различных паров и газов (сорбционная емкость) и теплообменные свойства (теплопроводность, температуропроводность, термовлагопроводность и теплоемкость).

Сыпучесть. Зерновая масса довольно легко заполняет емкость любой конфигурации и при известных условиях может истекать из нее. Большая подвижность зерновой массы - ее сыпучесть - объясняется тем, что она в основе своей состоит из отдельных мелких твердых частиц - зерен основной культуры и различных примесей [12].

Хорошая сыпучесть зерновых масс имеет огромное практическое значение. Правильно используя это свойство и применяя необходимые устройства и механизмы, можно полностью избежать затрат ручного физического труда. Так, зерновые массы можно легко перемещать при помощи норий, транспортеров и пневмо-транспортных установок, загружать в различные по размерам и форме транспортные средства (автомашины, вагоны, суда) и хранилища (закрома, склады, траншеи, силосы элеваторов). Наконец, они могут перемещаться самотеком. Это свойство широко используют при хранении, обработке зерновых масс и погрузочно-разгрузочных работах; на нем основана вся поточность процессов на элеваторах, мельницах и крупяных заводах. Зерновая масса, поднятая норией на верхний этаж элеватора или мельницы, самотеком спускается вниз и по пути ее обрабатывают на различных машинах. При загрузке и выгрузке хранилищ также используют самотек.

Степень заполнения хранилища зерновой массой зависит от сыпучести: чем она больше, тем легче и лучше заполняется емкость. Сыпучесть учитывается и при статистических расчетах хранилища (давление зерновой массы на пол, стены и другие конструкции).

Сыпучесть зерновой массы характеризуют углом трения или углом естественного откоса. Угол трения - наименьший угол, при котором зерновая масса начинает скользить по какой-либо поверхности. При скольжении зерна по зерну его называю углом естественного откоса, или углом ската.


Кроме этих показателей, известны коэффициенты трения зерновой массы, перемещающейся по самотекам и находящейся в покое.

Сыпучесть зерновой массы зависит от формы, размера, характера и состояния поверхности зерна, его влажности, количества примесей и их видового состава, материала, формы и состояния поверхности, по которой самотеком перемещают зерновую массу.

Наибольшей сыпучестью обладают массы, состоящие из семян шарообразной формы (горох, просо, люпин). Чем больше отклоняется форма зерен от шарообразной формы, и чем более шероховата их поверхность, тем меньше сыпучесть. Примером может служить относительно малая сыпучесть зерновых масс риса, некоторых сортов овса, ячменя и других.

Находящиеся в зерновой массе примеси, как правило, понижают ее сыпучесть. При большом содержании легких примесей (соломы, мякины и других примесей такого рода), а также при значительном содержании семян сорняков с цепкой и шероховатой поверхностью сыпучесть может быть почти потеряна. Такую зерновую массу без предварительной очистки не рекомендуется загружать в хранилища, запроектированные на выпуск зерновой массы самотеком.

С увеличением влажности зерновой массы ее сыпучесть также значительно понижается. Это явление характерно для всех зерновых масс.

В связи с влиянием рассмотренных факторов сыпучесть зерновых масс может колебаться в значительных пределах. Так, угол естественного откоса у овса может быть от 31 до 54° [6].

Самосортирование. Содержание в зерновой массе твердых частиц, различных по размеру и плотности, нарушает ее однородность при перемещении. Это свойство зерновой массы, проявляющееся и как следствие ее сыпучести, называют самосортированием так, при перевозках зерна в автомашинах или вагонах, передвижении по ленточным транспортерам в результате толчков и встряхиваний легкие примеси, семена в цветочных пленках, щуплые зерна и др. перемещаются к поверхности насыпи, а тяжелые уходят в ее нижнюю часть .

Самосортирование наблюдается и в процессе загрузки зерновой массы в хранилища. При этом самосортированию способствует парусность - сопротивление, оказываемое воздухом перемещению каждой отдельной частицы. Крупные, тяжелые зерна и примеси с меньшей парусностью опускаются отвесно и быстро достигают основания хранилища или поверхности образовавшейся насыпи. Щуплые, мелкие зерна и примеси с большой парусностью опускаются медленнее; они отбрасываются вихревыми движениями воздуха к стенам хранилища или скатываются по поверхности конуса, образуемого зерновой массой.



Самосортирование - явление отрицательное, так как при этом в зерновой массе образуются участки, неоднородные по физиологической активности, скважистости и т. д. Скопление легких примесей и пыли создает больше предпосылок к возникновению процесса самосогревания. В связи с самосортированием необходимо строго соблюдать правила взятия первичных проб для составления средней пробы.

Скважистость. При характеристике зерновой массы уже отмечалось, что в ней имеются межзерновые пространства - скважины, заполненные воздухом. Скважины составляют значительную часть объема зерновой насыпи и оказывают существенное влияние на другие ее физические свойства и происходящие в ней физиологические процессы .

Так, воздух, циркулирующий по скважинам, конвекцией способствует передаче тепла и перемещению паров воды. Значительная газопроницаемость зерновых масс позволяет использовать это свойство для продувания их воздухом (при активном вентилировании) или вводить в них пары различных химических веществ для обеззараживания (дезинсекции). Запас воздуха, а следовательно, и кислорода создает в зерновой массе на какой-то период (иногда очень длительный) нормальный газообмен для ее живых компонентов.

Величина скважистости зерновой массы зависит в основном от факторов, влияющих на натуру зерна. Так, с увеличением влажности уменьшается сыпучесть, а следовательно, и плотность укладки. Крупные примеси обычно увеличивают скважистость, мелкие легко размещаются в межзерновых пространствах и уменьшают ее. Зерновые массы, содержащие крупные и мелкие зерна, обладают меньшей скважистостью. Выровненные зерна, а также шероховатые или со сморщенной поверхностью укладываются менее плотно. Так, скважистость овса составляет - 50-70 %.

В связи с самосортированием скважистость в различных участках зерновой массы может быть неодинаковой, что приводит к неравномерному распределению воздуха в отдельных ее участках. При большой высоте насыпи зерновых масс происходит их уплотнение и скважистость уменьшается. Зная объем, занимаемый зерновой массой, и ее скважистость, легко установить объем находящегося в скважинах воздуха. Это количество воздуха при активном вентилировании принимается за один обмен.

Сорбционные свойства. Зерно и семена всех культур, и зерновые массы в целом являются хорошими сорбентами. Они способны поглощать из окружающей среды пары различных веществ и газы. При известных условиях наблюдается обратный процесс - выделение (десорбция) этих веществ в окружающую среду.


В зерновых массах наблюдаются такие сорбционные явления, как адсорбция, абсорбция, капиллярная конденсация и хемосорбция. Их значительная способность к сорбции объясняется двумя причинами: капиллярно-пористой коллоидной структурой зерна или семени и скважистостью зерновой массы.

Исследование структуры зерна и семян различных культур показало, что между их клетками и тканями имеются макро- и микрокапилляры и поры. Диаметр макропор равен 10-3-10-4 см, а микропор - 10-7 см. Стенки макро- и микрокапилляров во внутренних слоях зерна являются активной поверхностью, участвующей в процессах сорбции молекул паров и газов. Кроме того, по системе макро- и микрокапилляров перемещаются ожиженные пары [14].

О связи сорбционных свойств зерна с его качеством сообщалось выше (запахи, влажность и т.д.). Не меньшее значение имеют они в практике хранения, обработки и транспортирования зерна. Так, рациональные режимы сушки или активного вентилирования зерновых масс могут быть осуществлены только с учетом их сорбционных свойств. Изменение влажности и массы, хранимых или транспортируемых партий зерна также чаще всего происходит вследствие сорбции или десорбции паров воды. Последнее не только имеет технологическое значение, но и связано с материальной ответственностью людей (заведующих складами, кладовщиков и т.д.), хранящих большие массы зерна. В связи с этим в практике хранения зерновых масс и работы с ними очень важно иметь представление о процессах влагообмена.

Равновесная влажность. Влагообмен между зерновой массой и соприкасающимся с ней воздухом в той или иной степени идет непрерывно. В зависимости от параметров воздуха (его влажности и температуры) и состояния зерновой массы влагообмен происходит в двух противоположных направлениях: 1) передача влаги от зерна к воздуху; такое явление (десорбция) наблюдается, когда парциальное давление водяных паров у поверхности зерна больше парциального давления водяных паров в воздухе; 2) увлажнение зерна вследствие поглощения (сорбции) влаги из окружающего воздуха; этот процесс происходит, если парциальное давление водяных паров у поверхности зерна меньше парциального давления водяных паров в воздухе.

Влагообмен между воздухом и зерном прекращается, если парциальное давление водяного пара в воздухе и над зерном одинаково. При этом наступает состояние динамического равновесия. Влажность зерна, соответствующая этому состоянию, называется равновесной. Иначе говоря, под равновесной понимают влажность, установившуюся при данных параметрах воздуха - его влагонасыщенности, температуре и давлении.


При длительном хранении зерновых масс с повышенной влажностью в условиях низкой относительной влажности воздуха происходит постепенное снижение их влажности. Наоборот, сухая зерновая масса при хранении в складе с воздухом, более насыщенным водяными парами, увлажняется, и ее масса увеличивается. Подобные изменения носят и сезонный характер, так как насыщенность воздуха влагой в разные месяцы различна. Это особенно заметно при хранении партий зерна и семян насыпью небольшой высоты (1-2 м) или в мягкой таре (тканевых мешках).

Максимальная равновесная влажность зерна, устанавливающаяся при его пребывании в воздушной среде, насыщенной водяными парами (относительная влажность ц = 100 %), является тем пределом, до которого зерно может сорбировать пары воды из воздуха. Дальнейшее увлажнение может происходить только при впитывании капельножидкой влаги. Установить точно равновесную влажность зерна при ц = 100 % довольно трудно, так как при длительном выдерживании его в воздухе, насыщенном водяными парами, оно подвергается активному воздействию микроорганизмов и покрывается колониями плесеней. Равновесная влажность зерна и семян зависит также от температуры воздуха: с понижением ее величина равновесной влажности возрастает. При снижении температуры с 30 до 0 °С равновесная влажность увеличивается на 1,4 % [12].

Теплофизические характеристики. Представление о них необходимо для понятия явлений теплообмена, происходящих в зерновой массе, которые необходимо учитывать при хранении, сушке и активном вентилировании.

Теплоемкость. Удельная теплоемкость абсолютно сухого вещества зерна примерно 1,51-1,55 кДж/(кг °С). С увеличением влажности зерна возрастает и его удельная теплоемкость. Так, при влажности зерна пшеницы 20 % его удельная теплоемкость равна 2,22 кДж/(кг °С). Теплоемкость учитывают при тепловой сушке зерна, так как расход тепла зависит от исходной влажности зерна.

Коэффициент теплопроводности зерновой массы находится в пределах 0,42-0,84 кДж/(м.ч. °С). Низкая теплопроводность зерновой массы обусловлена ее органическим составом и наличием воздуха, коэффициент теплопроводности которого всего лишь 0,084 кДж/(м. ч. °С). С увеличением влажности зерновой массы ее теплопроводность растет, но все же остается сравнительно низкой. Плохая теплопроводность зерновых масс, так же как и низкая температуропроводность, играет при хранении и положительную, и отрицательную роль .