Файл: Учитель Дыбова Лидия Александровна программа разработана на основе Алгебра и начала математического анализа сборник.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.12.2023
Просмотров: 52
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
РАЗДЕЛ 4 Результаты освоения предмета. система их оценки
Для успешного продолжения образования по специальностям, связанным с прикладным использованием математики, выпускник научится, а также получит возможность научиться для обеспечения успешного продолжения образования по специальностям, связанным с осуществлением научной и исследовательской деятельности в области математики и смежных наук .
Элементы теории множеств и математической логики. Свободно оперировать понятиями: множество, пустое, конечное и бесконечное множества, элемент множества, подмножество, пересечение, объединение и разность множеств; применять числовые множества на координатной прямой: отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости; проверять принадлежность элемента множеству; находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости;
Здесь и далее — знать определение понятия, знать и уметь доказывать свойства (признаки, если они есть) понятия, характеризовать связи с другими понятиями, представляя одно понятие как часть целостного комплекса, использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач. задавать множества перечислением и характеристическим свойством; оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример; проводить доказательные рассуждения для обоснования истинности утверждений; оперировать понятием определения, основными видами определений и теорем; понимать суть косвенного доказательства; оперировать понятиями счётного и несчётного множества; применять метод математической индукции для проведения рассуждений и доказательств при решении задач.
В повседневной жизни и при изучении других предметов: использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений; проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов; использовать теоретико-множественный язык и язык логики для описания реальных процессов и явлений, при решении задач других учебных предметов.
Числа и выражения. Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел; понимать и объяснять разницу между позиционной и непозиционной системами записи чисел; переводить числа из одной системы записи (системы счисления) в другую; доказывать и использовать признаки делимости, суммы и произведения при выполнении вычислений и решении задач; выполнять округление рациональных и иррациональных чисел с заданной точностью; сравнивать действительные числа разными способами; упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше второй; находить НОД и НОК разными способами и использовать их при решении задач; выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней; выполнять стандартные тождественные преобразования тригонометрических, логарифмических, степенных, иррациональных выражений; свободно оперировать числовыми множествами при решении задач; понимать причины и основные идеи расширения числовых множеств; владеть основными понятиями теории делимости при решении стандартных задач; иметь базовые представления о множестве комплексных чисел; свободно выполнять тождественные преобразования тригонометри-
ческих, логарифмических, степенных выражений; владеть формулой бинома Ньютона; применять при решении задач теорему о линейном представлении НОД, Китайскую теорему об остатках, Малую теорему Ферма; применять при решении задач теоретико-числовые функции: число и сумма делителей, функцию Эйлера; применять при решении задач цепные дроби, многочлены с действительными и целыми коэффициентами; владеть понятиями: приводимые и неприводимые многочлены; применять их при решении задач; применять при решении задач Основную теорему алгебры; простейшие функции комплексной переменной как геометрические преобразования.
В повседневной жизни и при изучении других предметов:
— выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближённых вычислений, используя разные способы сравнений;
— записывать, сравнивать, округлять числовые данные;
— использовать реальные величины в разных системах измерения;
— составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов.
Уравнения и неравенства
— Свободно оперировать понятиями: уравнение; неравенство; равносильные уравнения и неравенства; уравнение, являющееся следствием другого уравнения; уравнения, равносильные на множестве; равносильные преобразования уравнений;
— решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения третьей и четвёртой степеней, дробно-рациональные и иррациональные;
— овладеть основными типами показательных, логарифмических, иррациональных, степенных уравнений и неравенств и стандартными методами их решений и применять их при решении задач;
— применять теорему Безу к решению уравнений;
— применять теорему Виета для решения некоторых уравнений степени
выше второй;
— понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;
— владеть методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;
— использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;
— решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;
— владеть разными методами доказательства неравенств;
— решать уравнения в целых числах;
— изображать на плоскости множества, задаваемые уравнениями, неравенствами и их системами;
— свободно использовать тождественные преобразования при решенииуравнений и систем уравнений;
— свободно определять тип и выбирать метод решения показательных и логарифмических уравнений и неравенств, иррациональных уравнений и неравенств, тригонометрических уравнений и неравенств, их систем;
— свободно решать системы линейных уравнений;
— решать основные типы уравнений и неравенств с параметрами;
— применять при решении задач неравенства Коши—Буняковского, Бернулли;
В повседневной жизни и при изучении других предметов:
— составлять и решать уравнения, неравенства, их системы при решении задач из других учебных предметов;
— выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем, при решении задач из других учебных предметов;
— составлять и решать уравнения и неравенства с параметрами при решении задач из других учебных предметов;
— составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты;
— использовать программные средства при решении отдельных классов уравнений и неравенств.
Функции
— Владеть понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значения функции на числовом промежутке, периодическая функция, период, чётная и нечётная функции; уметь применять эти понятия при решении задач;
— владеть понятием: степенная функция; строить её график и уметь применять свойства степенной функции при решении задач;
— владеть понятиями: показательная функция, экспонента; строить их графики и уметь применять свойства показательной функции при решении задач;
— владеть понятием: логарифмическая функция; строить её график и уметь применять свойства логарифмической функции при решении задач;
— владеть понятием: тригонометрические функции; строить их графики и уметь применять свойства тригонометрических функций при решении задач;
— владеть понятием: обратная функция; применять это понятие при решении задач;
— применять при решении задач свойства функций: чётность, периодичность, ограниченность;
— применять при решении задач преобразования графиков функций;
— владеть понятиями: числовые последовательности, арифметическая и геометрическая прогрессии;
— применять при решении задач свойства и признаки арифметической и геометрической прогрессий;
— владеть понятием: асимптота; уметь его применять при решении задач;