Файл: Учитель Дыбова Лидия Александровна программа разработана на основе Алгебра и начала математического анализа сборник.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.12.2023
Просмотров: 50
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
— применять методы решения простейших дифференциальных уравнений первого и второго порядков.
В повседневной жизни и при изучении других учебных предметов:
— определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки знакопостоянства, асимптоты, точки перегиба, период и т. п.), интерпретировать свойства в контексте конкретной практической ситуации;
— определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и т. п. (амплитуда, период и т. п.).
Элементы математического анализа
— Владеть понятием: бесконечно убывающая геометрическая прогрессия и уметь применять его при решении задач;
— применять для решения задач теорию пределов;
— владеть понятиями: бесконечно большие числовые последовательности и бесконечно малые числовые последовательности; уметь сравнивать бесконечно большие и бесконечно малые последовательности;
— владеть понятиями: производная функции в точке, производная функции;
— вычислять производные элементарных функций и их комбинаций;
— исследовать функции на монотонность и экстремумы
— строить графики и применять их к решению задач, в том числе с параметром;
— владеть понятием: касательная к графику функции; уметь применять его при решении задач;
— владеть понятиями: первообразная, определённый интеграл;
— применять теорему Ньютона—Лейбница и её следствия для решения задач;
— свободно владеть стандартным аппаратом математического анализа для вычисления производных функции одной переменной;
— свободно применять аппарат математического анализа для исследования функций и построения графиков, в том числе исследования на выпуклость;
— оперировать понятием первообразной для решения задач;
— овладеть основными сведениями об интеграле Ньютона—Лейбница и его простейших применениях;
— оперировать в стандартных ситуациях производными высших порядков;
— уметь применять при решении задач свойства непрерывных функций;
— уметь применять при решении задач теоремы Вейерштрасса;
— уметь выполнять приближённые вычисления (методы решения уравнений, вычисления определённого интеграла);
— уметь применять приложение производной и определённого интеграла к решению задач естествознания;
— владеть понятиями: вторая производная, выпуклость графика функции; уметь исследовать функцию на выпуклость.
В повседневной жизни и при изучении других учебных предметов:
— решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик процессов, интерпретировать полученные результаты.
Комбинаторика, вероятность и статистика, логика и теория графов
— Оперировать основными описательными характеристиками числового набора; понятиями: генеральная совокупность и выборка;
— оперировать понятиями: частота и вероятность события, сумма и произведение вероятностей; вычислять вероятности событий на основе подсчёта числа исходов;
— владеть основными понятиями комбинаторики и уметь применять их при решении задач;
— иметь представление об основах теории вероятностей;
— иметь представление о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин;
— иметь представление о математическом ожидании и дисперсии случайных величин;
— иметь представление о совместных распределениях случайных величин;
— понимать суть закона больших чисел и выборочного метода измерения вероятностей;
— иметь представление о нормальном распределении и примерах нормально распределённых случайных величин;
— иметь представление о корреляции случайных величин;
— иметь представление о центральной предельной теореме;
— иметь представление о выборочном коэффициенте корреляции и линейной регрессии;
— иметь представление о статистических гипотезах и проверке статистической гипотезы, о статистике критерия и её уровне значимости;
— иметь представление о связи эмпирических и теоретических распределений;
— иметь представление о кодировании, двоичной записи, двоичном дереве;
— владеть основными понятиями теории графов (граф, вершина, ребро, степень вершины, путь в графе) и уметь применять их при решении задач;
— иметь представление о деревьях и уметь применять его при решении задач;
— владеть понятием: связность; уметь применять компоненты связности при решении задач;
— уметь осуществлять пути по рёбрам, обходы рёбер и вершин графа;
— иметь представление об Эйлеровом и Гамильтоновом пути; иметь представление о трудности задачи нахождения Гамильтонова пути;
— владеть понятиями: конечные счётные множества; счётные множества; уметь применять их при решении задач;
— уметь применять метод математической индукции;
— уметь применять принцип Дирихле при решении задач.
В повседневной жизни и при изучении других предметов:
— вычислять или оценивать вероятности событий в реальной жизни;
— выбирать методы подходящего представления и обработки данных.
Текстовые задачи
— Решать разные задачи повышенной трудности;
— анализировать условие задачи, выбирать оптимальный метод решения задачи, рассматривая различные методы;
— строить модель решения задачи, проводить доказательные рассуждения при решении задачи;
— решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата;— анализировать и интерпретировать полученные решения в контексте
условия задачи, выбирать решения, не противоречащие контексту;
— переводить при решении задачи информацию из одной формы записи в другую, используя при необходимости схемы, таблицы, графики, диаграммы.
В повседневной жизни и при изучении других предметов:
— решать практические задачи и задачи из других предметов.
История и методы математики
— Иметь представление о вкладе выдающихся математиков в развитие науки;
— понимать роль математики в развитии России;
— использовать основные методы доказательства, проводить доказательство и выполнять опровержение;
— применять основные методы решения математических задач;
— на основе математических закономерностей в природе характеризовать
красоту и совершенство окружающего мира и произведений искусства;
— применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач;
— пользоваться прикладными программами и программами символьных вычислений для исследования математических объектов;
— применять математические знания к исследованию окружающего мира (моделирование физических процессов, задачи экономики).
При оценке устных и письменных ответов учитель учитывает полноту, глубину, прочность знаний и умений учащихся, использование их в различных ситуациях. Оценка зависит от наличия и характера погрешностей, допущенных учащимися. Среди погрешностей выделяются погрешности и недочеты.
Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел ЗУН программы. К недочетам относятся погрешности, которые свидетельствуют о недостаточно полном усвоении основных знаний или умений или об отсутствии знаний, не считающихся в программе основными. Недочетами также считаются: погрешности, которые не привели к искажению смысла, полученного учеником задания или способа его выполнения; неаккуратная запись; небрежное выполнение чертежа.
Программа предполагает достижение выпускниками старшей школы следующих личностных, метапредметных и предметных результатов.
В личностных результатах сформированность: — целостного мировоззрения, соответствующего современному уровню развития науки математики и общественной практики ее применения; — основ саморазвития и самовоспитания в соответствии с общечеловеческими ценностями и идеалами гражданского общества; готовности и способности к самостоятельной, творческой и ответственной деятельности с применением методов математики;
— готовности и способности к образованию, в том числе самообразованию, на протяжении всей жизни; сознательного отношения к непрерывному образованию как условию успешной профессиональной и общественной деятельности на основе развитой мотивации учебной деятельности и личностного смысла изучения математики, заинтересованности в приобретении и расширении математических знаний и способов действий, осознанности в построении индивидуальной образовательной траектории; — осознанного выбора будущей профессии, ориентированной на применение математических методов и возможностей реализации собственных жизненных планов; отношения к профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем; — логического мышления: критичности (умение распознавать логически некорректные высказывания), креативности (собственная аргументация, опровержения, постановка задач, формулировка проблем, работа над исследовательским проектом и др.).
В метапредметных результатах сформированность: — способности самостоятельно ставить цели учебной и исследовательской, проектной деятельности, планировать, осуществлять, контролировать и оценивать учебные действия в соответствии с поставленной задачей и условиями ее выполнения; — умения самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач; — умения находить необходимую информацию, критически оценивать и интерпретировать информацию в различных источниках (в справочниках, литературе, Интернете), представлять информацию в различной форме (словесной, табличной, графической, символической), обрабатывать, хранить и передавать информацию в соответствии с познавательными или коммуникативными задачами; — навыков осуществления познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания; — умения продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
— владения языковыми средствами — умения ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства; — владения навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.
В предметных результатах сформированность: — представлений о математике как части мировой культуры и о месте математики в современной цивилизации, о способах описания на математическом языке явлений реального мира; — представлений о математических понятиях как о важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий; — умений применения методов доказательств и алгоритмов решения; умения их применять, проводить доказательные рассуждения в ходе решения задач; — стандартных приемов решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использования готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения уравнений и неравенств; — умений обосновывать необходимость расширения числовых множеств (целые, рациональные, действительные, комплексные числа) в связи с развитием алгебры (решение уравнений, основная теорема алгебры); — умений описывать круг математических задач, для решения которых требуется введение новых понятий (степень, арифметический корень, логарифм; синус, косинус, тангенс, котангенс; арксинус, арккосинус, арктангенс, арккотангенс; решать практические расчетные задачи из окружающего мира, включая задачи по социально-экономической тематике, а также из смежных дисциплин; — умений приводить примеры реальных явлений (процессов), количественные характеристики которых описываются с помощью функций; использовать готовые компьютерные программы для иллюстрации зависимостей; описывать свойства функций с опорой на их графики; соотносить реальные зависимости из окружающей жизни и из смежных дисциплин с элементарными функциями, делать выводы о свойствах таких зависимостей; — умений объяснять на примерах суть методов математического анализа для исследования функций и вычисления площадей фигур, ограниченных графиками функций; объяснять и геометрический, и физический смысл производной; пользоваться понятием производной при описании свойств функций; — представлений о процессах и явлениях, имеющих вероятностный характер, о статистических закономерностях в реальном мире, об основных понятиях элементарной теории вероятностей; умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин; — навыков использования готовых компьютерных программ при решении задач. Достижение личностных результатов оценивается на качественном уровне (без отметки). Сформированность метапредметных и предметных умений оценивается в баллах по результатам текущего, тематического и итогового контроля.