Файл: ОСНОВЫ ХИМИИ НЕФТИ И ГАЗА.doc

Добавлен: 08.02.2019

Просмотров: 3872

Скачиваний: 33

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

При эксплуатации глубоких скважин и при большом падении давления в пласте применяют глубинно-насосный способ добычи нефти, при котором в скважину опускают поршневой или центробежный насос, и нефть постепенно выкачивают на поверхность.

С помощью указанных способов добычи можно извлечь не более 40 % нефти. Остальную нефть извлекают вторичными методами. При этом в скважину нагнетают газы (метан, этан и т.д.), и нефть под давлением выходит наверх. Иногда производят законтурное обводнение - в скважину закачивают воду, которая вытесняет нефть. При добыче вязких нефтей в скважину закачивают перегретый до 200 0С водяной пар или растворители. Весьма эффективна закачка в пласт кислоты, поверхностно-активных веществ и ряда других реагентов.

Проблема максимального извлечения нефти из пласта является одной из важнейших проблем эксплуатации нефтяных и газовых месторождений.

Давление, под которым находится нефть в пласте, приводит к усиленному растворению в ней газов, выделяющихся из нефти при подъёме её на поверхность и снятии давления. Эти газы называют попутными, их состав также зависит от давления.

Поскольку давление в нефтяном слое постепенно уменьшается в процессе эксплуатации, то меняется и состав газов в соответствии со свойствами его упругости; сначала газ обогащён метаном, затем этаном, потом пропаном и т. д.

В момент наименьшего давления выделяются наиболее «жирные» газы, содержащие заметные количества жидких (при обычных условиях) углеводородов, так называемый газовый бензин.


1.2. Происхождение нефти и газа


Вопрос о происхождении (генезисе) нефти и газа имеет большое теоретическое и практическое значение. Решение этого вопроса позволяет облегчить поиск и разведку нефтяных и газовых месторождений, оценить их запасы, правильно организовать добычу и переработку.

В настоящее время достаточно хорошо известно, как и в каких геологических условиях скапливаются нефти и природный газ. Вопрос же о происхождении их до сих пор окончательно не решен.

Многочисленные теории о происхождении нефти и газа делятся на две основные категории - органического (биогенного) и неорганического (абиогенного) происхождения.

Одна из неорганических теорий происхождения нефти была предложена в 1877 г. Д.И. Менделеевым. Он выдвинул так называемую карбидную гипотезу. По его мнению, вода проникла в глубь земли по трещинам в осадочных и кристаллических породах до магмы, где реагировала с карбидами тяжелых металлов, образуя углеводороды:


СаС2 + 2Н2О → Са(ОН)2 + С2Н2

AlC3 + 12H2O 4Al(OH)3 + 3CH4

Под действием высоких температур на больших глубинах углеводороды и вода испарялись, поднимались к наружным частям земли и конденсировались в хорошо проницаемых осадочных породах. Опыты, проведённые химиками, подтвердили такую возможность образования углеводородов.


В 1982 г. русский учёный Соколов В.Д. предложил так называемую “космическую” гипотезу, согласно которой углеводороды нефти образованы из углерода и водорода в эпоху формирования Земли и других планет. По мере охлаждения Земля углеводороды поглощались ею и конденсировались в земной коре. Одним из доводов этой гипотезы является обнаружение значительных количеств метана в атмосфере планет.

Глубинные массивные кристаллические периодитовые породы, как и метиориты, содержат элементарный углерод и карбиды тяжёлых металлов. Эти же породы содержат воду, водород, окись углерода и углекислоту. В этой связи в наше время выдвинут целый ряд других гипотез о неорганическом происхождении нефти и газа в недрах Земли в результате химических реакций непосредственно из углерода и водорода в условиях высоких температур, давлений и каталитического действия оксидов металлов (Fe, Ni и др.) (Н.А. Кудрявцев, В.Б. Порфильев и др.).

Химизм получения углеводородов из окиси углерода и водорода известен благодаря исследованиям учёных: Е.И. Орлова, Н.Д. Зелинского и других.

Процесс первого синтеза углеводородов из СО и Н2 был осуществлён русским химиком Е.И. Орловым в г. Харькове (1908 г.), получившим из смеси СО и Н2 простейший олефиновый углеводород - этилен, очевидно по схеме:


2СО + 4Н2 → С2Н4 + 2Н2О


Эта реакция была проведена при температуре 100 0С и при контакте с катализатором, состоящим из Ni + Pd, осаждённых на коксе.

Позднее было установлено, что в результате получается не только этилен, но и ряд других, более сложных алкенов.

Тяжёлые металлы подгруппы железа, особенно в присутствии окиси алюминия и магния, как под давлением, так и без давления способствует образованию углеводородов сложного состава и разных рядов:

В зависимости от условий реакции в качестве конечных продуктов могут быть не только жидкие углеводороды и вода, но также и твёрдые парафины и церезины, газы – метан и его ближайшие гомологи и углекислота.

Однако следует сказать, что неорганические гипотезы происхождения нефти находятся в противоречии и с геологическими данными и современными знаниями о составе нефтей.

Значительное большинство геологов и химиков являются сторонниками органического происхождения нефти и газа. Сторонники органической гипотезы (М.В. Ломоносов, В.И. Вернадский, И.М. Губкин, А.Ф. Добрянский и др.) считают, что источниками происхождения нефти были остатки растений и животных, скопившихся в течение многих миллионов лет на дне водоемов в прошлые геологические эпохи в виде ила. Отмершие организмы перекрывались в дальнейшем слоями осадочных пород и под влиянием анаэробных бактерий подвергались биохимическим превращениям. При этом, в основном, происходили сложные процессы гидролиза и восстановление липидов (жироподобные вещества), углеводов, белков и лигнина, содержащихся в организмах. Часть органического вещества в верхних слоях осадочных отложений превращалась бактериями в газы (CO2, N2, NН3, CН4 и др.) – стадия диагенеза. В нижних же слоях отложений на глубине 1-3 км в условиях высокого давления (10-30 Мпа) и повышенной температуры (120-1500) при каталитическом влиянии горных пород начиналась решающая фаза генезиса нефти: образование углеводородов из органического вещества и их превращения - стадия катагенеза.


Продукты превращения - нефть и газ первоначально рассеяны в нефтематеринской, чаще всего глинистой породе. В результате давления породы, диффузии, фильтрации по порам и трещинам под действием капиллярных сил нефть и газ способны перемещаться (мигрировать) в толще пород. В результате миграции нефть и газ скапливались в так называемых ловушках, т.е. в малопроницаемых горных породах. Такие скопления нефти называют нефтяными залежами. Если количество нефти и газа в залежи велико, или в данной структуре пластов горных пород имеется несколько залежей, то говорят о нефтяном, нефтегазовом или газовом месторождении.

Большая часть геологических и геохимических наблюдений и фактов лучше подтверждает гипотезу органического происхождения нефти. Особенно убедительно выглядит хорошо доказуемая связь между составом нефти, живого вещества и органического вещества древних осадочных пород и современных осадков.


1.3. Основные физико-химические свойства нефтей


Физико-химические свойства нефтей и их фракций являются функцией их химического состава и структуры отдельных компонентов, а также их сложного внутреннего строения, обусловленного силами межмолекулярного взаимодействия.

Поскольку нефть и её фракции состоят из большого числа разнообразных по химической природе веществ, различающихся количественно и качественно, свойства нефтепродуктов представляют собой усреднённые характеристики, и показатели их непостоянны как для различных нефтей и фракций, так и для одинаковых фракций из разных нефтей.


1.3.1. Физические свойства нефтей и нефтепродуктов


Из физических параметров нефтей наибольшее значение имеют относительная плотность, вязкость, молекулярная масса, температуры кипения, застывания, теплота сгорания, оптические свойства, позволяющие судить в первом приближении о её составе.

Плотность нефти - характеризует состав и качество нефти и легкость отстаивания её от воды.

Плотность – величина, определяемая как отношение массы вещества к занимаемому им объёму.

Для нефти и нефтепродуктов обычно пользуются относительной плотностью, определяемой как отношение плотности нефти при 200С к плотности воды при 40С (d420).

Относительная плотность газов показывает, во сколько раз плотность его выше плотности сухого воздуха.

Относительная плотность нефтей в основном изменяется в пределах 0,750-1,0 г/см3. Но встречаются нефти с плотностью ниже 0,750 и густые асфальтообразные, плотность которых превышает 1,0. Различие в плотности нефтей связано с различием в количественном соотношении углеводородов отдельных классов: так нефти с преобладанием алканов легче нефтей, богатых ароматическими углеводородами. Нефти, содержащие значительный процент смолистых соединений, характеризуется плотностью выше 1,0. Плотность определяют ареометрами, гидростатическими весами.


Вязкость нефти - это свойство оказывать при движении сопротивление перемещению частиц относительно друг друга. Различают динамическую, кинематическую и условную вязкость. Единица динамической вязкости в международной системе единиц СИ - Паскаль в секунду (Пас). Это сопротивление, оказываемое жидкостью при перемещении со скоростью 1 м/с относительно друг друга двух её слоев площадью 1 м2 каждый, находящихся на расстоянии 1 м, под действием приложенной силы в 1 Н.

Величина, обратная динамической вязкости, называется текучестью.

Кинематическая вязкость представляет собой отношение динамической вязкости жидкости к её плотности при температуре определения. В системе СИ единица кинематической вязкости имеет размерность м2/с. Распространенными единицами кинематической вязкости (в системе СГС) являются Стокс (Ст) и сантистокс (сСт); 1 Ст= 1·10-4 м2/с.

На практике часто пользуются величиной так называемой условной вязкости, измеряемой в градусах (0ВУ), т.е. в безразмерных числах отношения времени истечения данной жидкости к истечению дистиллированной воды в одном и том же стандартном приборе при температуре 200С.

Кинематическая вязкость нефтей различных месторождений колеблется от 2 до 300 мм2/с (сСт) при 200С и для большинства нефтей обычно не превышает 40-60 мм2/с. Вязкость нефтей зависит от их углеводородного состава, температуры и давления.

Наибольшей вязкостью обладают нафтеновые углеводороды. При повышении температуры вязкость резко уменьшается, с повышением давления увеличивается.

Вязкость имеет большое значение, т.к. она определяет масштабы миграции при формировании залежей нефти, играет важную роль при добыче нефти (вязкую нефть труднее извлечь из недр), определяет расход энергии на перекачку нефти по трубопроводам. Определяют вязкость при помощи приборов, называемых вискозиметрами.

Средняя молекулярная масса большинства нефтей равна 250-300.

Нефти характеризуются температурой начала и конца кипения, диапазон которых в среднем составляет 450-500 0С.

Большое значение для нефти имеет температура застывания, зависящая от её состава. Встречаются нефти с плюсовой температурой застывания, для которых характерно значительное содержание твёрдых парафинов. Беспарафинистые нефти, как правило, имеют отрицательные температуры застывания.

Поскольку нефти используют для производства различных видов топлив, их характеризуют теплотой сгорания, которая составляет 10400-11000 ккал/кг (43250-45500 Дж/кг). Теплоту сгорания определяют сжиганием топлива в специальных аппаратах – калориметрических бомбах.

Одной из качественных характеристик нефти является цвет, который может меняться от чёрного, тёмно-коричневого до красноватого, жёлтого и светло-жёлтого в зависимости от содержания смолисто-асфальтеновых веществ.


Нефти обладают заметной флюоресценцией - радужной окраской поверхности в отражённом свете, что вызвано наличием конденсированных многоядерных ароматических соединений.

При облучении нефти ультрафиолетовыми лучами нефть светится - люминесцирует, что обусловлено, главным образом, наличием в ней смол, асфальтенов, порфиринов. Это свойство используется при анализе нефти. Люминесценция и флюоресценция имеют большое практическое (поисковое и разведочное) значение, позволяя обнаружить весьма незначительные количества её (следы) в кернах и породах из отложений.

Одной из важных оптических характеристик нефти и нефтепродуктов является показатель преломления (коэффициент рефракции). При преломлении света на границе раздела двух сред отношение синуса угла падения к синусу угла преломления остаётся постоянной величиной. Это отношение носит название показателя преломления второй среды по отношению к первой.

Величина показателя преломления (n) зависит от длины волны падающего света и температуры. Определяют его обычно на специальных приборах – рефрактометрах – при температуре 20 0С для монохроматического света (жёлтой линии D натрия). Отсюда символ показателя преломления (nD20). Показатель преломления является надёжной характеристикой чистоты лишь индивидуального соединения, и его применение к такой сложной смеси, как нефть, ограничено, но он сохраняет своё значение для изучения её отдельных компонентов и фракций.

Физические свойства пластовых нефтей сильно отличаются от свойств поверхностных, дегазированных нефтей, что обуславливается влиянием температур, давления и растворённого газа. Изменение физических свойств пластовых нефтей, связанных с условием нахождения их в пласте, учитывают при подсчёте запасов нефти и газа, при проектировании, разработке и эксплуатации нефтяных месторождений.


1.3.2. Элементный и изотопный состав нефтей и природных газов


Несмотря на то, что нефть залегает в различных геологических условиях, элементный состав её колеблется в узких пределах. Он характеризуется обязательным наличием пяти химических элементов - углерода, водорода, серы, кислорода и азота при резком количественном преобладании первых двух. Содержание углерода в нефтях колеблется в пределах 83-87%, в природных газах 42-78%. Водорода в нефтях 11-14%, в газах 14-24%. Из других элементов в нефтях чаще всего встречается сера. Её содержание в отдельных нефтях достигает 6-8%. В природных газах сера обычно содержится в виде сероводорода, количество которого иногда достигает 23% (Астраханское месторождение) и даже более 40% (Техас).

Содержание кислорода в нефтях иногда достигает 1-2%. В природных газах кислород присутствует преимущественно в виде СО2, количество которого изменяется от концентраций, близких к нулю, до почти чистых углекислых газов (80% СО2 - Семидовское месторождение в Западной Сибири, 99% СО2 - Нью-Мехико).