Добавлен: 08.02.2019
Просмотров: 4358
Скачиваний: 38
Содержание азота в нефтях не превышает 1%, а в природных газах может достигать десятков процентов. Некоторые природные газы почти полностью состоят из азота (85-95 % N2, месторождение Вест-Брук в Техасе).
В природных газах присутствуют гелий, аргон и другие инертные газы. Содержание гелия в газах обычно менее 1-2%, хотя в некоторых случаях оно достигает 10%. Концентрация аргона в газах, как правило, не превышает 1 %, и лишь в некоторых случаях достигает 2 %.
В составе нефти в очень малых количествах присутствуют и другие элементы, главным образом металлы: алюминий, железо, кальций, магний, ванадий, никель, хром, кобальт, германий, титан, натрий, калий и др. Обнаружены также фосфор и кремний. Содержание этих элементов не
превышает нескольких долей процента, определяется геологическими условиями залегания нефти. Так, основным элементами мезозойских и третичных нефтей является железо. В палеозойских нефтях Волго-Уральской области повышенное содержание ванадия и никеля. Считается, что часть микроэлементов находится в нефти с момента её образования в осадочных породах, а другая часть накапливается в последующий период существования нефтей.
Элементный состав некоторых нефтей приведен в табл. 1.
Таблица 1
Элементарный состав некоторых нефтей (% масс.)
Месторождение |
C |
H |
O |
S |
N |
Охинское (Сахалин) |
87,15 |
11, 85 |
0,27 |
0,30 |
0,43 |
Грозненское |
85,90 |
13,10 |
0,80 |
0,13 |
0,07 |
Тюменское (Западная Сибирь) |
85,92 |
12,88 |
0,36 |
0,66 |
0,18 |
Сураханское (Азербайджан) |
85,30 |
14,10 |
0,54 |
0,03 |
0,03 |
Ромашкинское (Татарстан) |
83,34 |
12,65 |
0,21 |
1,62 |
0,18 |
Коробковскае (Волгоградская обл.) |
85,10 |
13,72 |
0,02 |
1,07 |
0,09 |
Могутовское (Оренбургская обл.) |
83,85 |
12,02 |
0,85 |
3,00 |
0,28 |
Радаевское (Куйбышевская обл.) |
82,78 |
11,72 |
2,14 |
3,05 |
0,31 |
Полуостров Мангышлак |
85,73 |
13,00 |
0,4 |
0,69 |
0,18 |
Арланское (Башкортостан) |
84,42 |
12,15 |
0,06 |
3,04 |
0,33 |
Ухтинское (Коми) |
85,47 |
12,19 |
1,93 |
0,09 |
0,20 |
Самотлорское (Западная Сибирь) |
86,23 |
12,70 |
0,25 |
0,63 |
0,10 |
Большой интерес для выяснения геохимической истории нефтей представляет изотопный состав нефтей, т.е. соотношение в них изотопов углерода, водорода, серы и азота. По имеющимся данным, отношение масс различных изотопов в нефтях составляет: 12С/13С 91-94, Н/Д (1Н/2Н) 3895-4436, 32S/34S - 22-22,5, 14N/15N - 273-277.
Различные компоненты одной и той же нефти имеют неодинаковый изотопный состав элементов. Низкокипящие фракции характеризуются облегчённым составом углерода. Различие в протонном составе наблюдается и для отдельных классов соединений (например, ароматические углеводороды богаче изотопом 13С, чем парафиновые углеводороды).
1.3.3. Групповой химический состав нефтей
Из элементного состава следует, что нефть в основном состоит из углеводородов. Наиболее широко в нефти представлены углеводороды трёх классов: алканы, циклоалканы и арены.
Присутствуют также углеводороды смешанного строения. Сравнительно жёсткие условия, в которых в природе находится нефть (температура до 200 0С и более), обусловливает незначительное содержание лишь в некоторых нефтях таких химически активных углеводородов, как алкены и алкины.
Соединения с циклическими и полициклическими структурами преобладают в нефтях, приуроченным к относительно молодым отложениям (третичным), а алифатические структуры более характерны для нефтей из палеозойских отложений.
Из неуглеводородных компонентов нефтей известны кислородные, сернистые, азотистые соединения, также смолы и асфальтены, содерджащие и кислород, и серу, и азот, но с не вполне ясной химической природой. Имеются и некотрые другие элементно – органические соединения, но характер их тоже пока не совсем ясен.
Нефть содержит также и минеральные вещества.
1.3.4. Фракционный состав нефти
Для оценки качества добываемой нефти и выбора методов её дальнейшей переработки большое значение имеет распределение содержащихся в ней углеводородов по температурам кипения. Лабораторные исследования химического состава нефтей начинают с фракционной перегонки: отбирают узкие фракции, выкипающие в пределах двух-трёх, а иногда и одного градуса. В этих фракциях определяют содержание отдельных групп или индивидуальных углеводородов.
При лабораторном техническом контроле от начала кипения до 300 0С отбирают 10-градусные, а затем 50-градусные фракции.
На промышленных перегонных установках выделяют фракции, выкипающие в более широких температурных интервалах. Такие фракции обычно называют дистиллятами. Перегонку на таких установках вначале проводят при атмосферном давлении, отбирая следующие дистилляты:
- бензиновый (н.к. ÷ 170-200 0С);
- лигроиновый (160 ÷ 200 0С);
- керосиновый (180 ÷ 270-300 0С);
- газойлевый (270 ÷ 350 0С).
Промежуточные:
- керосино - газойлевый (270 ÷ 300 0С);
- газойле - соляровый (300 ÷ 350 0С);
- кубовый остаток - мазут.
Из фракций, выкипающих до 350 0С, смешением (компаундированием) составляют так называемые светлые нефтепродукты:
бензины авиационные и автомобильные; бензины и лигроины - растворители; керосины - реактивное и тракторное топливо; осветительный керосин; газойли - дизельное топливо.
Кубовый остаток (более 350 0С) - мазут, перегоняют в вакууме для предотвращения разложения компонентов, входящих в его состав, получая масляные дистилляты: соляровый, трансформаторный, веретённый, автоловый, цилиндровый и кубовый остаток - гудрон (или полугудрон). Масляные дистилляты идут на приготовление смазочных масел и пластичных смазок.
Из гудрона (полугудрона) получают наиболее вязкие смазочные масла и битум.
В зависимости от месторождения нефти имеют отличие по фракционному составу, выражающееся в различном выходе бензиновых, керосиновых и других фракций.
1.4. Классификация нефтей
Нефти различных месторождений и даже одного месторождения, но разных горизонтов, отличаются элементным и углеводородным составом, что определяет и различие в их физических и химических свойствах. Свойства нефтей обуславливают методы их добычи и эксплуатации месторождений, способы их переработки, вид и качество получаемых из них продуктов. Абсолютно одинаковые нефти не существуют, но имеются такие её виды, которые близки по своей химической природе и свойствам. Это позволило создать классификацию нефтей.
Приняты химическая и технологическая классификация нефтей.
1.4.1. Химическая классификация
В основу этой классификации положено преимущественное содержание в нефти углеводородов одного или нескольких классов. Класс нефти по групповому химическому составу определяется на во всей пробе нефти, а во фракции, выкипающей до 300 0С. В зависимости от преобладания в этой фракции углеводородов одного класса (выше 50%), нефти делятся на три основных типа: 1) метановые (М); 2) нафтеновые (Н); 3) ароматические (А).
Если во фракции, выкипающей до 300 0С, содержится более 25% углеводородов других классов, то такие нефти относят к нефтям смешанного типа: 1) метано-нафтеновые (МН); 2) нафтено-метановые (НМ); 3) ароматическо-нафтеновые (АН); 4) нафтено-ароматические (НА); 5) метаново-
ароматические (МА); 6) ароматическо-метановые (АМ). Имеются нефти, когда все три основные класса углеводородов содержатся в них примерно в одинаковых количествах, это метано-нафтено-ароматические нефти. Нефти первых трёх типов встречаются редко. Из них чаще других встречаются нафтеновые нефти, чаще ароматические. Большинство нефтей относится к смешанным типам. Нефти типов МА и АМ в природе не обнаружены.
1.4.2. Технологическая классификация
Согласно технологической классификации, принятой в нашей стране, нефти подразделяются на классы - по содержанию серы; типы - в зависимости от потенциального содержания топлив (фракций, выкипающих до 350 0С); группы - по потенциальному содержанию базовых масел; подгруппы - по качеству масел, определяемых индексом вязкости; виды - по содержанию парафина*.
По количеству серы нефти подразделяются на три класса: I-малосернистые (содержат не более 0,5% масс. серы); II-сернистые (содержат от 0,51 до 2% масс. серы); III- высокосернистые (выше 2% серы).
По выходу светлых фракций, перегоняющихся до 350 0С, нефти делятся на три типа: Т1 - не менее 45%; Т2 -30-44,9%; Т3 - менее 30%.
По содержанию базовых масел нефти делятся на четыре группы: М1 -не менее 25% в расчёте на нефть; М2 - 15-25% в расчёте на нефть и не менее 45% в расчёте на мазут; М3 - 15-25% в расчёте на нефть и 30-45% в расчёте на мазут; М4 - менее 15% в расчёте на нефть.
По качеству базовых масел, оцениваемому индексом вязкости, различают две подгруппы (И1, И2).
Если в нефти содержится не более 1,5% парафина, то такую нефть относят к малопарафиновой (вид П1); при содержании парафина от 1,5 до 6% - к парафиновой (П2); выше 6% - к высокопарафиновой (П3).
На основе технологической классификации каждая нефть имеет свой шифр. Так, например, Туймазинская девонская нефть имеет шифр: Т1М3И1П2 - который означает, что это высокосернистая, парафиновая нефть с содержанием светлых фракций свыше 45%, масел -15-25% в расчёте на нефть и имеющих индекс вязкости более 85.
К числу технологических можно отнести классификации, предложенные для более узко направленных характеристик нефтей. Например, классификация нефтей для выбора варианта их подготовки к транспорту.
2. Химический состав нефти
2.1. Углеводороды нефти и нефтепродуктов
Углеводороды – наиболее простые по составу органические соединения. Их молекулы построены из атомов только двух элементов – углерода и водорода. Общая формула CnHm. Они различаются по строению углеродного скелета и характеру связей между атомами углерода (схема 1).
По первому признаку их делят на ациклические (алифатические) углеводороды, молекулы которых построены из открытых углерод – углеродных цепочек, например, гексан и изогексан:
СН3
СН3-СН2-СН2-СН2-СН2-СН3 СН3-СН-СН2-СН2-СН3 ,
гексан изогексан
и циклические (карбоциклические) углеводороды.
Карбоцикличекие углеводороды, обладающие особыми свойствами («ароматический характер»), получили название ароматических, например:
Другие карбоциклические углеводороды, например, циклогексан, называются алициклическими:
По характеру связей между углеродными атомами углеводороды могут быть насыщенные, или предельные (алканы), и ненасыщенные (непредельные). Последние могут содержать разное количество двойных (алкены, алкадиены, циклоалкены и др.), тройных (алкины, циклоалкины и др.) связей или те и другие одновременно:
Схема 1. Классификация углеводородов
2.2. Алканы
2.2.1. Строение, изомерия, структурные формулы
Строение, изомерия. Алканы – алифатические углеводороды, в молекуле которых атомы углерода связаны между собой и с атомами водорода одинарной связью (σ-связь). Осюда и другое их название – предельные, или насыщенные, углеводороды. Родоначальник и простейший представитель алканов – метан СН4. В молекуле метана, как и в молекулах других алканов, атом углерода находится в состоянии sp3- гибридизации.
Общая формула соединений этого ряда СnH2n+2. Каждый последующий его представитель отличается от предыдущего на группу CH2 (метиленовая группа, табл. 2). Такой ряд родственных органических соединений с однотипной структурой, близкими химическими и закономерно изменяющимися физическими свойствами называется гомологическим рядом; члены этого ряда – гомологами.
Гомологический ряд алканов по названию его первого представителя часто называют рядом метана. Три первых соединения этого ряда не имеют изомеров. Начиная с бутана, наблюдается явление изомерии, т.е. существование нескольких соединений с одинаковым качественным и количественным составом, с одинаковой молекулярной массой, но различными физическими и химическими свойствами.
Строение бутана С4Н10 может быть представлено с помощью двух формул:
Такой вид изомерии называют структурной изомерией (в данном случае – изомерия углеродного скелета). Углеводороды с неразветвлённой углеродной цепью называют углеводородами «нормального строения (н-бутан). С увеличением числа углеродных атомов в молекуле алкана число изомеров быстро возрастает; так, для углеводорода С5Н12 можно написать формулы трёх изомеров:
Гексан (С6) имеет 5 изомеров; декан (С10) – 75, эйкозан (С20) – 336319.
Приведённые формулы изомеров бутана и пентана называют структурными. Они показывают не только какие атомы и в каком количестве входят в молекулу данного соединения, но и отражают порядок и характер связей между ними. Различают полную, или развёрнутую, структурную формулу:
изооктан
и краткую, или звеньевую:
изооктан
В изооктане имеется четыре типа углеродных атомов: атомы 1,5,6,7,8 связаны только с одним углеродным атомом – такие атомы углерода называют первичными, атом 3 с двумя – вторичный атом, атом 4 с тремя – третичный углеродный атом. Углеродный атом 2 называется четвертичным. Соответственно первичными, вторичными и третичными называются связанные с ними атомы водорода.
2.2.2. Номенклатура
Существует несколько способов наименования органических соединений: тривиальные (исторические) названия, рациональная и систематические номенклатуры.
Тривиальные названия обычно связаны с источниками, первыми способами получения веществ, именами учёных или являются случайными. Они не говорят о структуре молекулы и в большинстве случаев возникли в начальный период развития химии.
Названия органических соединений по рациональной и систематической номенклатурам указывают не только вид и число атомов, входящих в его состав, но и дают представление о структуре молекулы.
Наиболее удобной, дающей возможность назвать любое соединение, является систематическая номенклатура органических соединений, использующая систему правил, разработанную комиссией по номенклатуре органических соединений при Международном союзе Чистой и Прикладной химии – International Union of Pure and Applied Chemistry – сокращённо IUPAC (ИЮПАК).
Первые четыре представителя алканов имеют случайные названия: метан, этан, пропан, бутан. По существу тривиальными можно считать и названия следующих алканов, хотя они и являются производными греческих числительных, соответствующих числу углеродных атомов в молекуле алкана [за исключением нонана и ундекана, корни названия которых латинские (табл. 2)], общим для всех гомологов является окончание «ан». Эти названия не дают представления о строении алканов (нормальная, разветвлённая цепь и т.д.), и поэтому однозначно могут быть использованы только для наименования алканов нормального строения.