Файл: 1 Классификация и физический механизм работы вч и свч генераторов.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.01.2024

Просмотров: 947

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Узкополосные согласующие цепи связи

Сложение мощности активных элементов. Мостовые схемы сложения, усилители с синфазными мостами, квадратурный мост, многополюсные схемы сложения.

Возбудители косвенного синтеза

Однополосная модуляция. Балансные модуляторы. Фильтры в однополосной аппаратуре.

Аналитическое сравнение ФМ и ЧМ.

Фазовая модуляция. Способы осуществления

Сигналы ЧМн формируются в возбудителе при скоростях передачи не более 1000 Бод.

Квадратурное представление сигнала

Радиоприемные и радиопередающие устройства

Раздел 1. Ведение. Принципы работы и классификация рПрУ

Принцип построения приемника прямого усиления

Принцип построения супергетеродинного приемника

Проблема дополнительных каналов приема в супергетеродине

Приемники прямого преобразования (с преобразованием на нулевую пч)

Приемники с цифровой обработкой сигнала

Пример. Радиовещательный приемник св диапазона

Пример. Приемник мобильной станции gsm 900

Ключевые режимы генератора с внешним возбуждением

Варакторные умножители частоты

Общие принципы построения схем

Схемы анодной цепи генератора.

Схемы питания цепей накала мощных генераторных ламп

Схема генератора с общей сеткой

Совместная работа генераторных ламп на общую нагрузку

Схемы широкодиапазонных генераторов

Схемы узкополосных генераторов

Синфазные мостовые схемы сложения мощностей

Амплитудные условия в автогенераторе

Стабильность частоты автогенератора

Схемы автогенераторов с колебательными контурами

Схемы кварцевых автогенераторов

Компенсационный метод синтеза частот

Декадный синтезатор частоты

Применение автоподстройки частоты в

Устойчивость работы генератора с внешним возбуждением

Паразитные колебания в генераторе

 Общие сведения об амплитудной модуляции

Коллекторная амплитудная модуляция

Усиление модулированных колебаний

Общие сведения об однополосной модуляции

Способ многократной балансной модуляции

Общие сведения об угловой модуляции

Спектр сигнала с угловой модуляцией

Методы получения частотной модуляции

Косвенные методы частотной модуляции

которого будет значительно ниже рабочей, т.к. емкость эквивалентного контура С = 2(Сас + 2CN)=4 Сас, а индуктивности в основном определяются большими индуктивностями блокировочных дросселей (Lбл) в цепях питания генератора. Как видно из эквивалентной схемы, нейтродинные конденсаторы в этом случае вдвое увеличивают проходную ёмкость и ток обратной связи, облегчая тем самым возникновение паразитных колебаний.

Чтобы не допустить паразитные колебания этого вида, приходится увеличивать потери в блокировочных дросселях. С этой целью их шунтируют резисторами R, либо их обмотки выполняют из проводников с большими потерями на высокой частоте (из железа или стали).

Самовозбуждение и паразитные колебания рассмотренных типов имеют место и в транзисторных генераторах; аналогичны и методы борьбы с Не удаётся применить только схемы нейтрализации, поскольку междуэлектродные ёмкости транзисторов существенно зависят от приложенного напряжения и сохранить баланс нейтродинного моста при меняющемся уровне сигнала практически не возможно.

Зависимость междуэлектродных ёмкостей от приложенного напряжения приводит также к специфическим для транзисторных генераторов «параметрическим» паразитным колебаниям. Такие колебания возникают на субгармониках частоты возбуждения. Подробнее об условиях возникновения параметрических колебаний можно познакомиться в [4].

 Общие сведения об амплитудной модуляции


⇐ Предыдущая33343536373839404142Следующая ⇒







В процессе изучения теории генератора нами использовалась модель сигнала в виде u(t)=Ucosωt. Такой сигнал обычно служит несущим колебанием, на которое в процессе модуляции или манипуляции наносится сигнал, содержащий информацию в исходной или предварительно преобразованной форме (цифровой, кодированной, шифрованной).

При амплитудной модуляции (АМ) в соответствии с информационным сигналом изменяется амплитуда несущего колебания. Для анализа свойств и особенностей АМ воспользуемся простейшей моделью информационного сигнала в форме моногармонического колебания косинусоидальной формы

uΩ(t)= UΩcosΩt (7.1)

здесь предполагается, что ω >> Ω.

С учётом (7.1) колебание с АМ принимает вид

u(t)=U(1+mcosΩt)cosωt (7.2)

В этом выражении m – коэффициент амплитудной модуляции

(7.3)

k – крутизна характеристики амплитудного модулятора.

В соответствии с (7.2), картина амплитудно-модулированного колебания во времени представлена на рисунке 7.1а.



Рисунок 7.1 – Колебание с амплитудной модуляцией

 

На этом рисунке «m+» - коэффициент модуляции «вверх» от уровня несущей; «m-»- коэффициент модуляции «вниз» от уровня несущей. По величине этих параметров можно, в первом приближении, судить о наличии нелинейных искажений. Как правило, появлению нелинейных искажений соответствует неравенство m+ и m- .

Преобразуем (7.2) к следующему виду

u(t)= U cosωt + U mcosΩt·cosωt =

= U cosωt+ (7.4)

На основании (7.4) амплитудно-модулированное колебание представляет собой сумму трёх гармонических колебаний с постоянной амплитудой и частотой ( для принятой модели информационного сигнала!). Спектр, соответствующий (7.4) представлен на рисунке 7.1б. Таким образом, амплитудно-модулированное колебание содержит исходную несущую частоту и две боковых частоты . При амплитудной модуляции сложным сигналом (например, речевым, музыкальным и т.п.), в спектре

АМобразуются две боковых полосы частот, причём верхняя боковая по форме спектра повторяет спектр информационного сигнала, а нижняя имеет инверсную форму (рисунок 7.1в).

Согласно (7.2) максимальная амплитуда АМ колебаний Uмакс=U(1+m). Соответственно, мощность несущей и максимальную мощность можно определить следующим образом

(7.5)

Среднюю, за период модулирующего сигнала, мощность АМ колебаний можно определить как сумму мощностей несущей и двух боковых

(7.6)

При m = 1, P1макс = 4Р1; Р1ср = 1,5Р1.

Качественные показатели АМ колебаний определяются статическими и динамическими модуляционными характеристиками. Статические модуляционные характеристики (СМХ) снимаются без процесса модуляции и представляют собой зависимость параметров режима генератора от модулирующего напряжения на АЭ (Uу,Ек). В качестве примера на рисунке 7.2а представлены СМХ, снятые в функции от управляющего напряжения.

 



Рисунок 7.2 – Статические и динамические

модуляционные характеристики

 

Динамические модуляционные характеристики (ДМХ) представляют собой зависимость коэффициента модуляции m и параметров режима генератора от амплитуды информационного сигнала. Снимаются динамические характеристики непосредственно в процессе модуляции. Примеры ДМХ представлены на рисунке 7.2б.

Яндекс.ДиректШлюз SMG-1016M. VoIP Оптовые цены!в Екатеринбурге! Шлюз SMG-1016M в наличии на складе. ELTEX. Заходите!Узнать большеeltexcm.ruСкрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента

Спасибо, объявление скрыто.

Преобразователь частоты ONI M680Широкий ассортимент надежных моделей для насосного оборудования. От 0,75 кВУзнать большеoni-system.comСкрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента


Спасибо, объявление скрыто.

Расчет полупроводниковых системКомпьютерное моделирование p-n переходов, диодов, транзистров в COMSOL.Узнать большеcomsol.ru0+Скрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента

Спасибо, объявление скрыто.

Огнезащита кабеля с выгодой 30%Завод-производитель Tehstrong. Огнестойкость до 240 мин. Доставка по Москве и МОУзнать большеtehstrong.ruСкрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента

Спасибо, объявление скрыто.

 

 

Качественные показатели АМ определяются также амплитудно-частотными характеристиками (АЧХ), которые снимаются в функции от частоты информационного сигнала F при m = 0,5 и 0,9. На рисунке 7.3 приводятся примеры АЧХ для коэффициента модуляции m и коэффициента гармоник Кг.



Рисунок 7.3 – Амплитудно-частотные характеристики

 

В качестве «опорной» частоты (Fo), относительно которой ведётся отсчет отклонения АЧХ, в радиовещательных передатчиках принимаются частоты 400 или 1000 Гц. Для коэффициента модуляции АЧХ снимается в децибеллах М[дб].

Амплитудная модуляция может быть осуществлена различными способами. В зависимости от того, в каком режиме по напряженности работает генератор, амплитуду колебаний можно менять с помощью напряжения возбуждения, коллекторного напряжения, напряжения смещения, сопротивления нагрузки. Однако на практике наибольшее применение нашли коллекторная (анодная, стоковая) модуляция и модуляция возбуждением, именуемая также усилением модулированных колебаний (УМК)

Коллекторная амплитудная модуляция


⇐ Предыдущая34353637383940414243Следующая ⇒







Для изучения особенностей и характеристик коллекторной модуляции исследуем зависимость параметров режима генератора от напряжения питания коллектора (Ек). С этой целью построим ряд динамических характеристик коллекторного тока при различных значениях Ек. Для упрощения задачи будем полагать фиксированными значения сопротивления коллекторной нагрузки Rк, амплитуды возбуждения Uу, напряжения смещения Еу и угла

отсечки коллекторного тока θ=900. Соответствующие динамические характеристики представлены на рисунке 7.4.

При больших Ек генератор находится в недонапряженном и критическом режимах (характеристики 1,2). При этом, импульс тока (для идеализированных статических характеристик) остается неизменным, и соответственно не меняется амплитуда коллекторного напряжения Uк=Iк1·Rк.

При дальнейшем уменьшении коллекторного напряжения генератор переходит в перенапряженный режим и в импульсе тока появляется провал.

 

Соответственно уменьшаются значения Iк0, Iк1 и Uк.



Рисунок 7.4 Динамические характеристики коллекторного тока

 

Заметим, что при очень малых значениях Ек коллекторный ток в транзисторных генераторах может поменять знак.

Таким образом, коллекторная модуляция в рассмотренном случае возможна лишь в ПНР, т.к. только в этом режиме проявляется зависимость коллекторного тока от коллекторного напряжения.

Построим статические модуляционные характеристики генератора для области ПНР (рисунок 7.5).

По мере снижения коллекторного напряжения ток Iк1 уменьшается вследствие увеличения провала в импульсе коллекторного тока; с другой стороны с увеличением напряженности режима растет коэффициент использования коллекторного напряжения ξ.

Это приводит к нарушению прямой пропорциональной зависимости между Iк1 и Ек , т.к.