Файл: 1 Классификация и физический механизм работы вч и свч генераторов.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.01.2024

Просмотров: 962

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Узкополосные согласующие цепи связи

Сложение мощности активных элементов. Мостовые схемы сложения, усилители с синфазными мостами, квадратурный мост, многополюсные схемы сложения.

Возбудители косвенного синтеза

Однополосная модуляция. Балансные модуляторы. Фильтры в однополосной аппаратуре.

Аналитическое сравнение ФМ и ЧМ.

Фазовая модуляция. Способы осуществления

Сигналы ЧМн формируются в возбудителе при скоростях передачи не более 1000 Бод.

Квадратурное представление сигнала

Радиоприемные и радиопередающие устройства

Раздел 1. Ведение. Принципы работы и классификация рПрУ

Принцип построения приемника прямого усиления

Принцип построения супергетеродинного приемника

Проблема дополнительных каналов приема в супергетеродине

Приемники прямого преобразования (с преобразованием на нулевую пч)

Приемники с цифровой обработкой сигнала

Пример. Радиовещательный приемник св диапазона

Пример. Приемник мобильной станции gsm 900

Ключевые режимы генератора с внешним возбуждением

Варакторные умножители частоты

Общие принципы построения схем

Схемы анодной цепи генератора.

Схемы питания цепей накала мощных генераторных ламп

Схема генератора с общей сеткой

Совместная работа генераторных ламп на общую нагрузку

Схемы широкодиапазонных генераторов

Схемы узкополосных генераторов

Синфазные мостовые схемы сложения мощностей

Амплитудные условия в автогенераторе

Стабильность частоты автогенератора

Схемы автогенераторов с колебательными контурами

Схемы кварцевых автогенераторов

Компенсационный метод синтеза частот

Декадный синтезатор частоты

Применение автоподстройки частоты в

Устойчивость работы генератора с внешним возбуждением

Паразитные колебания в генераторе

 Общие сведения об амплитудной модуляции

Коллекторная амплитудная модуляция

Усиление модулированных колебаний

Общие сведения об однополосной модуляции

Способ многократной балансной модуляции

Общие сведения об угловой модуляции

Спектр сигнала с угловой модуляцией

Методы получения частотной модуляции

Косвенные методы частотной модуляции

(7.7)

Наконец, при Ек провал в импульсе

тока коллектора резко увеличивается и ток Iк1 (в транзисторном генераторе)может поменять знак. В ламповом генераторе анодный ток не может поменять направление, поэтому при Еа ток Iа1 .

Область характеристик, в которой коллекторный ток может поменять направление, близка к 0 , поэтому в дальнейшем с небольшой погрешностью можно полагать, что статические характеристики при коллекторной модуляции начинаются из начала координат.

Из статических характеристик очевидны два основных недостатка коллекторной модуляции – нелинейность зависимости Iк1=f(Ек ) и значительная величина тока управляющего электрода. Последний недостаток определяется особенностями идеализированных характеристик тока истока, который не зависит от коллекторного напряжения, а ток управляющего электрода iу=iu-iк. У реальных АЭэтот недостаток отчётливо проявляется у генераторных ламп и, в меньшей мере, - у транзисторов.

Согласно (7.7), для устранения указанных недостатков необходимо обеспечить независимость коэффициента использования коллекторного напряжения ξ от Ек. Для этого режим генератора должен оставаться близким к критческому при понижении Ек . Достигнуть такого состояния возможно только одновременным и пропорциональным снижением максимального напряжения на управляющем электроде eкмакс=Uу +Eу, как это показано на рисунке 7.6. Осуществить это можно путём предварительной модуляции возбуждения Uу, или Eу, или иодновременно. Такая коллекторная модуляция получила название комбинированной.

Статические модуляционные характеристики комбинированной коллекторной модуляции представлены сплошными линиями на рисунке 7.6.

Здесь ЕкТ и Iк1Т соответствуют режиму генератора при отсутствии модуляции (режиму несущей частоты). Эти параметры определяют положение рабочей («телефонной») точки на статической модуляционной характеристике.




Рисунок 7.6 – Статические модуляционные характеристики

при комбинированной коллекторной модуляции

 

Если допустить некоторое нарастание напряженности режима по мере снижения Ек , то возможно достижение необходимого эффекта путём использования автоматического смещения за счёт постоянной составляющей тока управляющего электрода (см. например, рисунок 4.10). Модуляция коллекторным напряжением с применением автоматического смещения на управляющем электроде получила в литературе название «двойной» коллекторной модуляции.

Полная стабилизация напряженности режима при коллекторной модуляции обычно достигается при одновременной амплитудной модуляции возбуждения Uу. Если при этом используется и автоматическое смещение, то модуляцию называют «тройной». Заметим, что коэффициент модуляции возбуждения (mv)не должен превышать 0,6 ÷ 0,8, т.к. у реального АЭпри малых значениях Ек угол отсечки становится меньше 900, а в этом случае коллекторный ток исчезает при конечном значении( см. рисунок 5.3). Если допустить mv>0,8, возникнет «перемодуляция» и, связанные с этим, значительные нелинейные искажения.

В ламповых генераторах на тетроде стабилизация напряженности режим при анодной модуляции достигается одновременным изменением анодного напряжения Еа и напряжения на экранирующей сетке Ес2. Модуляция в этом случае называется анодно-экранной.

Заметим, что угол отсечки коллекторного тока слабо влияет на линейность статической модуляционной характеристики, поэтому его можно выбирать в соответствии с рекомендациями в разделе 3.8

Яндекс.ДиректSMG-1016M. VoIP по оптовым ценамв Екатеринбурге! SMG-1016M в наличии на складе. ELTEX. Заходите!Узнать большеeltexcm.ruСкрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента

Спасибо, объявление скрыто.

ИБП RielloОфициальный дилер. Широкий модельный ряд. Монтаж, ремонт, диагностика.Узнать большеiso-energo.ruСкрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента

Спасибо, объявление скрыто.

Преобразователь частоты ONI M680Широкий ассортимент надежных моделей для насосного оборудования. От 0,75 кВУзнать большеoni-system.comСкрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента



Спасибо, объявление скрыто.

Огнезащита кабеля с выгодой 30%Завод-производитель Tehstrong. Огнестойкость до 240 мин. Доставка по Москве и МОУзнать большеtehstrong.ruСкрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента

Спасибо, объявление скрыто.

Рассмотрим полный комплект статических модуляционных характеристик генератора при комбинированной коллекторной модуляции. Характер изменения коллекторных токов определён на рисунке 7.6. Амплитуда коллекторного напряжения Uк= Iк1·Rк, и характер её зависимости от Ек аналогичен зависимостям токов в силу постоянного сопротивления нагрузки Rк.

Колебательная мощность генератора Р1=0,5·Iк12 ·Rк. Поскольку между Iк1 и Ек существует прямо пропорциональная зависимость, мощность Р1 изменяется пропорционально квадрату Ек. Потребляемая мощность Р0=Ек Iк0, и, поскольку Iк0 пропорционален Ек, то Р0 также представляет собой квадратичную зависимость от Ек. Мощность тепловых потерь Рк =Р0-Р1 и, следовательно, также изменяется пропорционально Ек2. Коэффициент полезного действия генератора определяется отношением Р1/Р0 и не зависит от Ек.

Полный комплект статических модуляционных характеристик при комбинированной коллекторной модуляции представлен на рисунке 7.7.



Рисунок 7.7 - Статические модуляционные характеристики

коллекторной амплитудной модуляции

 

Согласно (7.5) Р1макс=Р1Т(1+m)2; поскольку электронный к.п.д. генератора при коллекторной модуляции не зависит от Ек, аналогичные зависимости будут иметь место и для Р0 и для Рк

Р0макс=Р0Т(1+m)2

Ркмакс=РкТ(1+m)2 (7.8)

Соответственно для амплитуд токов и напряжений на коллекторе получим

Iк1макс=Iк1Т(1+m); Iк0макс=Iк0Т(1+m)

Uкмакс=UкТ(1+m); Екмакс=ЕкТ(1+m) (7.9)

Определим теперь динамические модуляционные характеристики генератора при коллекторной модуляции.

Для этого подадим на коллектор АЭ звуковое напряжение
UΩ=mEкТ (см. рисунок 7.8)



Рисунок 7.8 – Коллекторная модуляция

 

При этом постоянная составляющая начнёт меняться в соответствии со звуковым сигналом. Амплитуда звуковой составляющей коллекторного тока составит IΩ=m·Iк0Т. Таким образом, для осуществления коллекторной модуляции в коллекторную цепь генератора необходимо подать звуковой сигнал, мощность которого составит

РΩ=0,5·IΩ·UΩ=0,5m2Iк0Т·EкТ = 0,5m2·Р0Т (7.10)

При m=1, РΩ=0,5·Р0Т ; таким образом модуляционное устройство передатчика должно будет обеспечить звуковую мощность сравнимую с мощностью потребляемой генератором.

Зависимость колебательной мощности от амплитуды звукового напряжения определена выражением (7.6), где m, при линейной модуляции, согласно (7.3) пропорционален UΩ . Поскольку к.п.д. генератора при коллекторной модуляции не зависит от , для потребляемой мощности и мощности потерь на коллекторе получим выражения аналогичные (7.6)

(7.11)

(7.12)

Если в схему генератора включить прибор, измеряющий ток нагрузки, то он покажет среднее за период модуляции значение, которое определится очевидным выражением

(7.13)

Графики динамических модуляционных характеристик коллекторной модуляции представлены на рисунке 7.9.

Сравнивая (7.11) и (7.10), можно сделать вывод, что непосредственно от источника питания генератор потребляет мощность Р0Т , а остальную часть от модулятора, т.е. Р0ср= Р0Т + РΩ.



Рисунок 7.9 – Динамические модуляционные характеристики

генератора с коллекторной модуляцией

 

При анодной модуляции ламповых генераторов, благодаря высокому и постоянному электронному к.п.д., а также способности генераторных ламп кратковременно выдерживать значительные перегрузки по напряжению и току, стало возможным форсирование генератора по мощности в максимальной точке статической модуляционной характеристики. На практике генераторные лампы при анодной модуляции форсируют в 2 раза по напряжению и в 1,5 ÷ 2 раз по току. Таким образом, от генераторной лампы при анодной модуляции можно получить мощность в 3 ÷ 4 раза больше номинальной (паспортной). При этом напряжение источника питания
ЕаТ выбирается равным номинальному ЕаN.

Транзисторные генераторы, в отличие от ламповых, не могут быть форсированы, т.к. транзистор не допускает даже кратковременных перегрузок, как по напряжению, так и по току. Более того, для обеспечения надежной работы генератора, номинальная мощность транзистора выбирается, как правило, с некоторым запасом по отношению к пиковой мощности. Напряжение источника питания в этом случае составляет не более 1/4 от максимально допустимого значения коллекторного напряжения (екдоп). Эта особенность транзисторного генератора иллюстрируется волновой диаграммой на рисунке 7.10.



Рисунок 7.10 – Волновая диаграмма коллекторной модуляции

транзисторного генератора

Ориентировочно напряжение источника питания Ек= ЕкТ выбирается следующим образом

(7.14)

На рисунке 7.11 приведена принципиальна схема анодно-экранной модуляции с двухтактным модулятором класса «В»

 



Рисунок 7.11 – Схема анодно-экранной модуляции

 

Мощный модулятор собран на лампах V2, V3 и представляет собой двухтактный усилитель мощности звуковой частоты, работающий с углом отсечки 900 в недонапряженном режиме. Это позволяет получить относительно высокий электронный к.п.д. и линейную амплитудную характеристику. Для обеспечения требований ГОСТ на электроакустические показатели модулируемого генератора, в схему модулятора включаются цепи отрицательной обратной связи (на схеме не показаны).

Звуковой сигнал через трансформатор поступает на модуляционный дроссель , складывается с напряжением источника питания Еа, и модулирует генератор по анодной цепи. Чтобы исключить подмагничивание трансформатора постоянным анодным током генератора, используется параллельная схема питания анодной цепи генератора с помощью модуляционного дросселя и разделительного конденсатора Срм. Опасность подмагничивания стального сердечника трансформатора постоянным током заключается в появлении нелинейных искажений сигнала. Искажения возникают вследствие смещения рабочей точки (Но), в область насыщения на характеристике трансформатора, отражающей зависимость магнитной индукции