Файл: 1 Классификация и физический механизм работы вч и свч генераторов.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.01.2024
Просмотров: 953
Скачиваний: 1
СОДЕРЖАНИЕ
Узкополосные согласующие цепи связи
Возбудители косвенного синтеза
Однополосная модуляция. Балансные модуляторы. Фильтры в однополосной аппаратуре.
Аналитическое сравнение ФМ и ЧМ.
Фазовая модуляция. Способы осуществления
Сигналы ЧМн формируются в возбудителе при скоростях передачи не более 1000 Бод.
Квадратурное представление сигнала
Радиоприемные и радиопередающие устройства
Раздел 1. Ведение. Принципы работы и классификация рПрУ
Принцип построения приемника прямого усиления
Принцип построения супергетеродинного приемника
Проблема дополнительных каналов приема в супергетеродине
Приемники прямого преобразования (с преобразованием на нулевую пч)
Приемники с цифровой обработкой сигнала
Пример. Радиовещательный приемник св диапазона
Пример. Приемник мобильной станции gsm 900
Ключевые режимы генератора с внешним возбуждением
Варакторные умножители частоты
Общие принципы построения схем
Схемы анодной цепи генератора.
Схемы питания цепей накала мощных генераторных ламп
Схема генератора с общей сеткой
Совместная работа генераторных ламп на общую нагрузку
Схемы широкодиапазонных генераторов
Схемы узкополосных генераторов
Синфазные мостовые схемы сложения мощностей
Амплитудные условия в автогенераторе
Стабильность частоты автогенератора
Схемы автогенераторов с колебательными контурами
Схемы кварцевых автогенераторов
Компенсационный метод синтеза частот
Применение автоподстройки частоты в
Устойчивость работы генератора с внешним возбуждением
Паразитные колебания в генераторе
Общие сведения об амплитудной модуляции
Коллекторная амплитудная модуляция
Усиление модулированных колебаний
Общие сведения об однополосной модуляции
Способ многократной балансной модуляции
Общие сведения об угловой модуляции
Спектр сигнала с угловой модуляцией
2.4. Нагрузочные, амплитудные и частотные характеристики ВЧ генератора
По мимо динамической характеристики работа ВЧ генератора определяется еще тремя видами характеристик: нагрузочной, амплитудной и частотной. Нагрузочные характеристики ВЧ генератора есть зависимости его выходных электрических параметров: колебательной мощности потребляемой и мощности рассеивания в электронном приборе амплитуд первых гармоник тока и напряжения постоянной составляющей тока и КПД от сопротивления нагрузки генератора . С их помощью можно выбрать оптимальный режим работы генератора по различным критериям (например, получению максимального КПД) и определить влияние изменения нагрузки (например, влияние входного сопротивления антенны) на выходные параметры ВЧ гeнератора. Примеры таких характеристик приведены на рис. 2.6.
Рис. 2.6. Нагрузочные характеристики ВЧ генератора
Амплитудные и частотные характеристики ВЧ генератора. При подаче на вход ВЧ генератора синусоидального сигнала , сигнал на его выходе или нагрузке (см. рис. 2.1, а) имеет вид
, т.е. отличается от входного амплитудой сигнала и фазой. Амплитудные характеристики есть зависимости амплитуды и фазы выходного сигнала от амплитуды входного сигнала:
; .
Пример таких характеристик приведен на рис. 2.7.
Р
ис. 2.7. Амплитудные характеристики ВЧ генератора
С помощью амплитудных характеристик, определяемых в одночастотном режиме работы, можно, например, рассчитать выходной комбинационный спектр при многочастотном входном сигнале. Частотные характеристики есть зависимости номинального коэффициента усиления по мощности ВЧ генератора и фазы выходного сигнала от частоты входного сигнала:
; .
Да нные характеристики определяют частотные свойства ВЧ генератора. Пример амплитудно-частотной характеристики приведен на рис. 4.8. С помощью данной характеристики, построенной в одночастотном режиме работы, можно определить прохождение через усилитель широкополосных сигналов, а также использование ВЧ генератора в диапазонных радиопередатчиках без перестройки электрических согласующих цепей.
Рис. 4.8. Частотные характеристики ВЧ генератора
2.5. Согласование электронного прибора с источником возбуждения и нагрузкой и номинальный коэффициент усиления по мощности ВЧ генератора
Номинальный коэффициент передачи или усиления по мощности ЧП. Структурная схема ВЧ усилителя состоит из трех каскадно соединенных ЧП (см. рис. 2.1, а). Рассмотрим, как передается мощность сигнала через один отдельно взятый ЧП (рис. 2.9, а). Параметром, количественно оценивающим данный процесс, является номинальный коэффициент передачи или усиления ЧП по мощности, равный отношению активной мощности, переданной в нагрузку
к номинальной мощности высокочастотного источника возбуждения:
, (2.7)
г
де - номинальная мощность источника возбуждения с амплитудой и внутренним комплексным сопротивлением , где - действительная, активная часть этого сопротивления.
Рис. 2.9. Передача мощности сигнала через один отдельно взятый ЧП
В активном четырехполюснике, т.е. содержащем электронный прибор усилительного типа, можно получить значение . В реактивном ЧП, т.е. содержащем только реактивные элементы - конденсаторы и индуктивности - значение , поскольку такой ЧП не может усиливать сигнал по мощности. При реактивном ЧП в случае имеет место оптимальное согласование источника возбуждения с нагрузкой, при котором номинальная мощность полностью, без потерь поступает в нагрузку.
В случае прямого присоединения нагрузки к генератору (рис. 2.10) для коэффициента передачи мощности с учетом (2.7) получим
. (2.8)
Пример. При и согласно (4.8) получим . Максимальное значение
в схеме на рис. 2.10 имеет место при выполнении условия
, (2.9)
т.е. когда сопротивления являются комплексно сопряженными (их действительные части равны, а реактивные части равны по модулю и противоположны по знаку). При расчете коэффициента в схеме с реактивным ЧП (см. рис. 2.9,а) можно воспользоваться эквивалентной схемой, приведенной на рис. 2.9,б, где - входное сопротивление ЧП, нагруженного на сопротивление . Значение в схеме на рис. 2.9,б рассчитывается по формуле (2.8) путем замены на . Номинальный коэффициент усиления по мощности ВЧ генератора. В ВЧ генераторе (см. рис. 2.1,а) два ЧП (входная и выходная согласующие цепи) являются реактивными, а средний (с электронным прибором) - активным. Для всего соединения в целом – трех каскадно включенных ЧП - номинальный коэффициент усиления генератора можно представить в виде произведения трех множителей:
(2.10)
г
де - коэффициент передачи по мощности входной согласующей цепи; - собственный коэффициент усиления электронного прибора (лампы или транзистора); - коэффициент передачи по мощности выходной согласующей цепи. Согласно (2.10) для получения максимально возможного коэффициента усиления ВЧ генератора с внешним возбуждением недостаточно иметь высокое значение данного параметра у самого электронного прибора: необходимо также оптимально согласовать входное сопротивление этого прибора с внутренним сопротивлением источника возбуждения, а выходное - с сопротивлением нагрузки. Для решения данной задачи необходимо знать входное
и выходное сопротивления электронного прибора (см. рис. 2.1,б) и произвести их оптимальное согласование соответственно с внутренним сопротивлением источника возбуждения и нагрузкой , т.е. выполнить условие (2.9).
Рис. 2.10 .
При этом схему ВЧ генератора (см. рис. 2.1,а) можно представить в виде двух частей: для входной и выходной цепей (рис. 2.11).
Рис. 2.11. Входная и выходная части согласующей цепи
Согласно обозначениям, приведенным на рис. 2.11, условиями оптимального согласования для входной и выходной согласующих цепей является выполнение соответственно следующих равенств:
; . (2.11)
При выполнении условий (2.11) значения коэффициентов передачи входной и выходной согласующих цепей и и коэффициент усиления ВЧ генератора (2.10) принимает максимальное значение , определяемое только электронным прибором.
Выводы по главе:
1. Именно в фильтрации несинусоидального сигнала, выделении из него 1-й гармоники сигнала и преобразовании его вновь в синусоидальный сигнал и состоит метод гармонической линеаризации, лежащий в основе анализа ВЧ генератора. Сам анализ включает в себя:
- определение с помощью ВАХ электронного прибора формы тока на его выходе при подаче на вход синусоидального сигнала;
- разложение в ряд Фурье согласно (4.5) полученной несинусоидальной зависимости для тока