Файл: Учебнометодическое пособие Специальность 44. 02. 02 Преподавание в начальных классах.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.01.2024
Просмотров: 172
Скачиваний: 3
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
КОГПОБУ « Омутнинский колледж педагогики, экономики и права»
Теоретические основы
начального курса математики
с методикой преподавания
Учебно-методическое пособие
Специальность 44.02.02 – «Преподавание в начальных классах»
Омутнинск 2016
Автор-составитель: Н.В.Тукмачева , преподаватель КОГОБУ СПО « Омутнинский колледж педагогики, экономики и права»
Теоретические основы начального курса математики с методикой преподавания: учебно-методическое пособие / автор-сост. Н.В.Тукмачева,; КОГПОБУ «Омутнинский колледж педагогики, экономики и права». Омутнинск , 2016. – 35 с.
Настоящее пособие предназначено для студентов специальности 44.02.02 «Преподавание в начальных классах» по МДК. 01.04 «Теоретические основы начального курса математики с методикой преподавания» по разделу « Нумерация чисел»
Пособие содержит теоретический материал, который разбит на отдельные логические части, содержит задания, способствующие усвоению теоретических положений и формированию общих учебных умений. Пособие может быть использовано с целью организации самостоятельной работы студентов при подготовке к практическим занятиям и текущему и итоговому контролю, организации практических занятий.
© КОГПОБУ «Омутнинский колледж педагогики, экономики и права»
Лекция. Общие вопросы изучения натуральных чисел
I. Основные понятия темы.
II. Программные требования к изучению темы.
III. Различные подходы к изучению натуральных чисел
I. Основные понятия
Целые положительные число называются натуральными в связи с тем, что они были придуманы человечеством для счета элементов реальных множеств ( животных, людей, предметов), а так же для обозначения результатов процесса измерения величин (длины, массы, емкости, времени, площади и т.п.). Т.о. различают число как результат счета элементов множества и число как результат измерения величин.
Альтернативные программы по математике для начальной школы различаются главным образом способом знакомства с этими характеристиками числа.
Как и многие математические понятия, понятие натурального числа возникло из потребности практики. Уже в глубокой древности нужно было сравнивать между собой различные множества. Простейшим способом сравнения множеств было установление взаимно-однозначного соответствия между множествами, т.е. образование пар элементов из обоих множеств. Если такое соответствие имело место, то множества считались равночисленными. Если взаимно-однозначное соответствие устанавливалось между элементами одного множества и только частью другого, то считали, что в первом множестве элементов меньше, чем во втором. Со временем для сравнения стали применять множества посредники ( пальцы, камешки, узелки…)- их называют «числовые фигуры»; на следующем этапе в результате процесса абстрагирования от характера множеств-посредников появилось понятие числа: один, два, три,… .
Наука, изучающая числа и действия с ними получила название «арифметика» (от греческого arithmos-число).
Число – это количественная характеристика множества предметов.
Цифра – это символ, с помощью которого записываются числа. Цифры от 1 до 9 называются значащими, а нуль является незначащим. Цифры имеют различное изображение. Общеупотребимы цифры, которые называются арабскими (хотя они имеют индийское происхождение): 1,2,3,4,5,6,7,8,9,0 и римские I,V,X,L,C,D,M. Римские цифры употребляются только в печатном изображении, а арабские цифры –в печатном (1,2.3,4,5,6,7,8,9,0) и прописном изображении (1,2.3,4,5,6,7,8,9,0).
Натуральные числа, записанные в порядке возрастания, образуют натуральный ряд или ряд натуральных чисел.
Отрезок натурального ряда чисел - это часть натурального ряда вида:1,2,3; или 1,2,3,4,5,6,7;и т.п.. По определению, отрезок натурального ряда длиной а - это все числа, не превосходящие этого числа.
Числа первого десятка называются однозначными. Они обозначаются с помощью одной цифры. Для записи двузначного числа используются две цифры и т.д.
Под разрядом понимается определенное место в записи числа в позиционной системе счисления (разряд – позиция цифры в записи числа).
Многозначные числа образуются, записываются с опорой не только на понятие разряда, но и на понятие класса. Класс объединяет три разряда.
II. Программные требования к изучению темы.
Выписка из примерной программы по математике | | |||
Обязательные результаты обучения | | |||
| | |||
Образовательная программа | Выписка из программы Учебник | Место в учебнике | | |
Программа «Школа России» | | Кл стр. | | |
Гармония | . | Кл стр. | | |
Школа 2100 | | Кл стр. | | |
Школа 2100 | | Кл стр. | | |
Школа 21 века | | Кл стр. | | |
Программа Занкова Л.В. | | Кл стр. | |
III. Различные подходы к изучению натуральных чисел
I. Рассмотрим подход к изучению чисел в программе “Школа России».
Курс математики в этой программе построен концентрично, т.е. в нем выделены концентры «Десяток», «Сотня», «Тысяча», «Многозначные числа».
В концентре «Десяток» учащиеся знакомятся с однозначными числами и цифрами, которые используют в десятичной системе счисления. В этом же концентре вводится число 10, при записи которого используется две цифры. При этом с цифрой 0 знакомятся после того, как введено число 10.
Работа, целью которой является формирование представления о десятичной системе счисления, начинается в концентре «Сотня». Здесь выделяют две ступени: сначала изучается нумерация чисел 11-20, а затем 21-100. Выделение первой ступени (11-20) объясняется тем, что в названии каждого числа второго десятка наблюдается одна закономерность, а в записи другая.
Дальнейшее изучение нумерации продолжается в концентре «Тысяча». Особенности десятичной системы счисления позволяют младшим школьникам осуществить перенос умения читать и записывать двузначные числа на область трехзначных. Появление нового разряда – сотен связывается в введением счетной единицы (сотни).
В концентре «Многозначные числа» дети учатся читать и записывать числа в пределах миллиона. Для усвоения структуры многозначного числа и терминологии, связанной с названием разрядов и классов, учащиеся упражняются в чтении чисел, записанных в таблицу, которая называется таблицей разрядов и классов.
2. В связи с тематическим построением курса в нем выделяются не концентры, а темы: «Однозначные числа», «Двузначные числа», « Трехзначные числа», «Четырехзначные числа» и «Пятизначные и шестизначные числа» в процессе изучения которых у учащихся формируются сознательные навыки чтения и записи чисел. Выделение тем, названия которых сориентированы на количество знаков в числе, способствуют пониманию детьми различий между цифрой и числом.
Лекция. Методика изучения чисел первого десятка
1.Задачи изучения темы.
2. Получение натурального числа. Разъяснение принципа образования натурального ряда чисел.
3. Знакомство с печатными и письменными цифрами.
4. Связь количества числа и цифры.
5. Разъяснение теоретико-множественного смысла натуральных чисел.
6.Усвоение состава однозначных чисел.
7. Обучение способам сравнения чисел.
8.Знакомство с числом и цифрой 0.
9.Знакомство с числом 10.
10. Наглядные пособия, используемые при изучении чисел первого десятка.
1.Задачи изучения темы
Цель изучения темы: познакомить учащихся как с каждым числом множества чисел {0,1,2,3,….10}, так и со свойствами начального отрезка натурального ряда N10.
Задачи изучения темы:
-Разъяснить принцип образования натурального ряда чисел.
- Разъяснить теоретико-множественный смысл натуральных чисел.
-Вести целенаправленную работу по усвоению состава однозначных чисел.
-Познакомить с печатными и письменными цифрами.
-Научить сравнивать числа.
- Познакомить с числом и цифрой 0.
- Познакомить с числом 10.
2.Получение натурального числа. Разъяснение принципа образования натурального ряда чисел.
Место числа в ряду определено способом его получения: каждое следующее становится в ряду справа от предыдущего. Для понимания такого порядка расположения ребенок должен предварительно освоиться с процессом перевода пространственного расположения объектов, подчиненных отношению «следовать за», в плоскость, где отношение «следовать за» подразумевает «ближайшее справа, а «предшествовать»- ближайшее слева.
Последовательное увеличение изучаемых отрезков натурального ряда чисел позволяет осознать принцип его образования. Каждый раз рассматривается весь ранее изученный отрезок натурального ряда и каждое новое число выступает как его продолжение (1; 1,2; 1,2,3; 1,2,3,4;……..).
Получение каждого следующего числа в натуральном ряду сначала разъясняется на наглядном материале, а затем записывается с помощью знаков +, - . При этом на каждом отрезке натурального ряда выполняются однотипные упражнения.
Например: [1,2,3,4].
- Положите 2 круга.
Ниже положите столько же треугольников.
Придвиньте еще один треугольник.
Сколько стало треугольников?
Как получили 3 треугольника?
Каких фигур больше, треугольников или кругов? На сколько?
- Положите в следующий ряд столько квадратов, сколько треугольников.
Что надо сделать, чтобы квадратов стало на 1 больше, чем треугольников? Сколько стало квадратов?
Как получили 4 квадрата?
- Если к трем флажкам присоединить еще один флажок, сколько станет флажков?
Если к трем ученикам подойдет еще один, сколько их будет?
Если к числу 3 прибавить 1, какое число получится?
Запишем это: 3 + 1 = 4.
- Положите 4 кружка.
Ниже положите столько же квадратов.
Уберите 1 квадрат.
Сколько получилось квадратов?
Как получилось 3 квадрата?
От 4 флажков убрали 1. Сколько осталось?
От 4 учеников отходит 1. Сколько осталось?
Из числа 4 вычли 1. Сколько получится?
4 – 1 = 3.
Аналогичная работа проводится при изучении всех отрезков натурального ряда. В результате выполнения однообразных упражнений на каждом отрезке, связанных с получением следующего и предыдущего чисел, дети убеждаются в том, что числа упорядочены по величине: после числа 1 называют при счете число 2, которое больше его на 1; после числа 2 называют число 3, которое больше на 1 и т.д. Перед числом 4 называют число 3, которое меньше на 1, и т.д.
Математическую основу действий учащихся при изучении отрезка натурального ряда от 1 до10 составляет связь чисел с конечными множествами. Для усвоения принципа образования натурального ряда чисел они постоянно обращаются к действиям с предметами, рассматривая различны ситуации.
Линейка с нанесенной на ней сантиметровой шкалой является хорошим наглядным пособием, для рассмотрения вопросов нумерации, в частности получения числа, последовательности чисел в натуральном ряду.
3.Разъяснение теоретико-множественный смысл количественного натурального числа.
В начальном курсе математики количественное натуральное число рассматривается как общее свойство класса конечных равномощных множеств. Поэтому, когда учащиеся изучают число «один», на странице учебника приводятся изображения предметов по одному: одно ведро, одна девочка, один стол и т.д., когда изучается число «три» на странице учебника приводятся изображения различных совокупностей, содержащих по три элемента: три кубика, три палочки и т.д. Так происходит при изучении всех чисел первого десятка, но число элементов в множестве определяется путем пересчета. Демонстрируя различные, но равномощные множества, учитель раскрывает теоретико-множественный смысл натурального числа.