Файл: 1 Цели и задачи реализации основной образовательной программы основного общего образования 5.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.01.2024
Просмотров: 672
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Первичные представления о пирамиде, параллелепипеде, призме, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах.
Отношение. Равенство фигур.
Свойства равных треугольников. Признаки равенства треугольников.
Параллельность прямых
Признаки и свойства параллельных прямых. Аксиома параллельности Евклида. Теорема Фалеса.
Перпендикулярные прямые
Прямой угол. Перпендикуляр к прямой. Наклонная, проекция. Серединный перпендикуляр к отрезку. Свойства и признаки перпендикулярности.
Подобие
Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия.
Взаимное расположение прямой и окружности, двух окружностей.
Измерения и вычисления
Величины
Понятие величины. Длина. Измерение длины. Единицы измерения длины. Величина угла. Градусная мера угла.nmПонятие о площади плоской фигуры и её свойствах. Измерение площадей. Единицы измерения площади. Представление об объёме и его свойствах. Измерение объёма. Единицы измерения объёмов.
Измерения и вычисления
Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей. Тригонометрические функции острого угла в прямоугольном треугольнике Тригонометрические функции тупого угла. Вычисление элементов треугольников с использованием тригонометрических соотношений. Формулы площади треугольника, параллелограмма и его частных видов, формулы длины окружности и площади круга. Сравнение и вычисление площадей. Теорема Пифагора. Теорема синусов. Теорема косинусов.
Расстояния
Расстояние между точками. Расстояние от точки до прямой. Расстояние между фигурами.
Геометрические построения
Геометрические построения для иллюстрации свойств геометрических фигур.
Инструменты для построений: циркуль, линейка, угольник. Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному,
Построение треугольников по трём сторонам, двум сторонам и углу между ними, стороне и двум прилежащим к ней углам.
Деление отрезка в данном отношении.
Геометрические преобразования
Преобразования
Понятие преобразования. Представление о метапредметном понятии «преобразование». Подобие.
Движения
Осевая и центральная симметрия, поворот и параллельный перенос. Комбинации движений на плоскости и их свойства
.
Векторы и координаты на плоскости
Векторы
Понятие вектора, действия над векторами, использование векторов в физике, разложение вектора на составляющие, скалярное произведение.
Координаты
Основные понятия, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур.
Применение векторов и координат для решения простейших геометрических задач.
История математики
Возникновение математики как науки, этапы её развития. Основные разделы математики.
Выдающиеся математики и их вклад в развитие науки.
Бесконечность множества простых чисел. Числа и длины отрезков. Рациональные числа. Потребность в иррациональных числах. Школа Пифагора Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П.Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений степеней, больших четырёх. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э.Галуа.
Появление метода координат, позволяющего переводить геометрические объекты на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных систем координат.
Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске. Сходимость геометрической прогрессии.
Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма, Б.Паскаль, Я. Бернулли, А.Н.Колмогоров.
От земледелия к геометрии. Пифагор и его школа. Фалес, Архимед. Платон и Аристотель. Построение правильных многоугольников. Триссекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л Эйлер, Н.И.Лобачевский. История пятого постулата.
Геометрия и искусство. Геометрические закономерности окружающего мира.
Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и Аристарх о размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и Солнца. Измерение расстояния от Земли до Марса.
Роль российских учёных в развитии математики: Л.Эйлер. Н.И.Лобачевский, П.Л.Чебышев, С. Ковалевская, А.Н.Колмогоров.
Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н.Крылов. Космическая программа и М.В.Келдыш.
Программа разработана с целью реализации инженерного образования на уровне основного общего образования при изучении учебного предмета «Информатика».
При реализации программы учебного предмета «Информатика» у учащихся формируется информационная и алгоритмическая культура; умения формализации и структурирования информации, способ представления данных в соответствии с поставленной задачей - таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных; представления о компьютере как универсальном устройстве обработки информации; представления об основных изучаемых понятиях: информация, алгоритм, модель - и их свойствах; развивается алгоритмическое мышление, необходимое для профессиональной деятельности в современном обществе; формируются представления о том, как понятия и конструкции информатики применяются в реальном мире, о роли информационных технологий и роботизированных устройств в жизни людей, промышленности и научных исследованиях; навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в с е т и Интернет, умения соблюдать нормы информационной этики и права.
Введение
Информация и информационные процессы
Информация – одно из основных обобщающих понятий современной науки.
Различные аспекты слова «информация»: информация как данные, которые могут быть обработаны автоматизированной системой и информация как сведения, предназначенные для восприятия человеком.
Примеры данных: тексты, числа. Дискретность данных. Анализ данных. Возможность описания непрерывных объектов и процессов с помощью дискретных данных.
Информационные процессы – процессы, связанные с хранением, преобразованием и передачей данных.
Компьютер – универсальное устройство обработки данных
Архитектура компьютера: процессор, оперативная память, внешняя энергонезависимая память, устройства ввода-вывода; их количественные характеристики.
Компьютеры, встроенные в технические устройства и производственные комплексы. Роботизированные производства, аддитивные технологии (3D-принтеры).
Программное обеспечение компьютера.
Носители информации, используемые в ИКТ. История и перспективы развития. Представление об объемах данных и скоростях доступа, характерных для различных видов носителей. Носители информации в живой природе.
История и тенденции развития компьютеров, улучшение характеристик компьютеров.
Суперкомпьютеры. Физические ограничения на значения характеристик компьютеров. Параллельные вычисления. Техника безопасности и правила работы на компьютере.
Математические основы информатики Тексты и кодирование
Символ. Алфавит – конечное множество символов. Текст – конечная последовательность символов данного алфавита. Количество различных текстов данной длины в данном алфавите.
Разнообразие языков и алфавитов. Естественные и формальные языки. Алфавит текстов на русском языке.
Кодирование символов одного алфавита с помощью кодовых слов в другом алфавите; кодовая таблица, декодирование.
Двоичный алфавит. Представление данных в компьютере как текстов в двоичном алфавите.
Двоичные коды с фиксированной длиной кодового слова. Разрядность кода – длина кодового слова. Примеры двоичных кодов с разрядностью 8, 16, 32.
Единицы измерения длины двоичных текстов: бит, байт, Килобайт и т. д. Количество информации, содержащееся в сообщении.
Подход А.Н.Колмогорова к определению количества информации.
Зависимость количества кодовых комбинаций от разрядности кода. Код ASCII. Кодировки кириллицы. Примеры кодирования букв национальных алфавитов. Представление о стандарте Unicode. Таблицы кодировки с алфавитом, отличным от двоичного.
Искажение информации при передаче. Коды, исправляющие ошибки. Возможность однозначного декодирования для кодов с различной длиной кодовых слов.
Дискретизация
Измерение и дискретизация. Общее представление о цифровом представлении аудиовизуальных и других непрерывных данных.
Кодирование цвета. Цветовые модели
. Модели RGB и CMYK. Модели HSB и CMY. Глубина кодирования. Знакомство с растровой и векторной графикой.
Кодирование звука. Разрядность и частота записи. Количество каналов записи.
Оценка количественных параметров, связанных с представлением и хранением изображений и звуковых файлов.
Системы счисления
Позиционные и непозиционные системы счисления. Примеры представления чисел в позиционных системах счисления.
Основание системы счисления. Алфавит (множество цифр) системы счисления. Количество цифр, используемых в системе счисления с заданным основанием. Краткая и развернутая формы записи чисел в позиционных системах счисления.
Двоичная система счисления, запись целых чисел в пределах от 0 до 1024. Перевод натуральных чисел из десятичной системы счисления в двоичную и из двоичной в десятичную.
Восьмеричная и шестнадцатеричная системы счисления. Перевод натуральных чисел из десятичной системы счисления в восьмеричную, шестнадцатеричную и обратно.
Перевод натуральных чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно.
Арифметические действия в системах счисления.
Элементы комбинаторики, теории множеств и математической логики
Расчет количества вариантов: формулы перемножения и сложения количества вариантов.
Количество текстов данной длины в данном алфавите.
Множество. Определение количества элементов во множествах, полученных из двух или трех базовых множеств с помощью операций объединения, пересечения и дополнения.
Высказывания. Простые и сложные высказывания. Диаграммы Эйлера-Венна. Логические значения высказываний. Логические выражения. Логические операции: «и» (конъюнкция, логическое умножение), «или» (дизъюнкция, логическое сложение), «не» (логическое отрицание). Правила записи логических выражений. Приоритеты логических операций.
Таблицы истинности. Построение таблиц истинности для логических выражений.
Логические операции следования (импликация) и равносильности (эквивалентность). Свойства логических операций. Законы алгебры логики. Использование таблиц истинности для доказательства законов алгебры логики. Логические элементы. Схемы логических элементов и их физическая (электронная) реализация. Знакомство с логическими основами компьютера.
Отношение. Равенство фигур.
Свойства равных треугольников. Признаки равенства треугольников.
Параллельность прямых
Признаки и свойства параллельных прямых. Аксиома параллельности Евклида. Теорема Фалеса.
Перпендикулярные прямые
Прямой угол. Перпендикуляр к прямой. Наклонная, проекция. Серединный перпендикуляр к отрезку. Свойства и признаки перпендикулярности.
Подобие
Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия.
Взаимное расположение прямой и окружности, двух окружностей.
Измерения и вычисления
Величины
Понятие величины. Длина. Измерение длины. Единицы измерения длины. Величина угла. Градусная мера угла.nmПонятие о площади плоской фигуры и её свойствах. Измерение площадей. Единицы измерения площади. Представление об объёме и его свойствах. Измерение объёма. Единицы измерения объёмов.
Измерения и вычисления
Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей. Тригонометрические функции острого угла в прямоугольном треугольнике Тригонометрические функции тупого угла. Вычисление элементов треугольников с использованием тригонометрических соотношений. Формулы площади треугольника, параллелограмма и его частных видов, формулы длины окружности и площади круга. Сравнение и вычисление площадей. Теорема Пифагора. Теорема синусов. Теорема косинусов.
Расстояния
Расстояние между точками. Расстояние от точки до прямой. Расстояние между фигурами.
Геометрические построения
Геометрические построения для иллюстрации свойств геометрических фигур.
Инструменты для построений: циркуль, линейка, угольник. Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному,
Построение треугольников по трём сторонам, двум сторонам и углу между ними, стороне и двум прилежащим к ней углам.
Деление отрезка в данном отношении.
Геометрические преобразования
Преобразования
Понятие преобразования. Представление о метапредметном понятии «преобразование». Подобие.
Движения
Осевая и центральная симметрия, поворот и параллельный перенос. Комбинации движений на плоскости и их свойства
.
Векторы и координаты на плоскости
Векторы
Понятие вектора, действия над векторами, использование векторов в физике, разложение вектора на составляющие, скалярное произведение.
Координаты
Основные понятия, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур.
Применение векторов и координат для решения простейших геометрических задач.
История математики
Возникновение математики как науки, этапы её развития. Основные разделы математики.
Выдающиеся математики и их вклад в развитие науки.
Бесконечность множества простых чисел. Числа и длины отрезков. Рациональные числа. Потребность в иррациональных числах. Школа Пифагора Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П.Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений степеней, больших четырёх. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э.Галуа.
Появление метода координат, позволяющего переводить геометрические объекты на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных систем координат.
Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске. Сходимость геометрической прогрессии.
Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма, Б.Паскаль, Я. Бернулли, А.Н.Колмогоров.
От земледелия к геометрии. Пифагор и его школа. Фалес, Архимед. Платон и Аристотель. Построение правильных многоугольников. Триссекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л Эйлер, Н.И.Лобачевский. История пятого постулата.
Геометрия и искусство. Геометрические закономерности окружающего мира.
Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и Аристарх о размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и Солнца. Измерение расстояния от Земли до Марса.
Роль российских учёных в развитии математики: Л.Эйлер. Н.И.Лобачевский, П.Л.Чебышев, С. Ковалевская, А.Н.Колмогоров.
Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н.Крылов. Космическая программа и М.В.Келдыш.
Информатика
Программа разработана с целью реализации инженерного образования на уровне основного общего образования при изучении учебного предмета «Информатика».
При реализации программы учебного предмета «Информатика» у учащихся формируется информационная и алгоритмическая культура; умения формализации и структурирования информации, способ представления данных в соответствии с поставленной задачей - таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных; представления о компьютере как универсальном устройстве обработки информации; представления об основных изучаемых понятиях: информация, алгоритм, модель - и их свойствах; развивается алгоритмическое мышление, необходимое для профессиональной деятельности в современном обществе; формируются представления о том, как понятия и конструкции информатики применяются в реальном мире, о роли информационных технологий и роботизированных устройств в жизни людей, промышленности и научных исследованиях; навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в с е т и Интернет, умения соблюдать нормы информационной этики и права.
Введение
Информация и информационные процессы
Информация – одно из основных обобщающих понятий современной науки.
Различные аспекты слова «информация»: информация как данные, которые могут быть обработаны автоматизированной системой и информация как сведения, предназначенные для восприятия человеком.
Примеры данных: тексты, числа. Дискретность данных. Анализ данных. Возможность описания непрерывных объектов и процессов с помощью дискретных данных.
Информационные процессы – процессы, связанные с хранением, преобразованием и передачей данных.
Компьютер – универсальное устройство обработки данных
Архитектура компьютера: процессор, оперативная память, внешняя энергонезависимая память, устройства ввода-вывода; их количественные характеристики.
Компьютеры, встроенные в технические устройства и производственные комплексы. Роботизированные производства, аддитивные технологии (3D-принтеры).
Программное обеспечение компьютера.
Носители информации, используемые в ИКТ. История и перспективы развития. Представление об объемах данных и скоростях доступа, характерных для различных видов носителей. Носители информации в живой природе.
История и тенденции развития компьютеров, улучшение характеристик компьютеров.
Суперкомпьютеры. Физические ограничения на значения характеристик компьютеров. Параллельные вычисления. Техника безопасности и правила работы на компьютере.
Математические основы информатики Тексты и кодирование
Символ. Алфавит – конечное множество символов. Текст – конечная последовательность символов данного алфавита. Количество различных текстов данной длины в данном алфавите.
Разнообразие языков и алфавитов. Естественные и формальные языки. Алфавит текстов на русском языке.
Кодирование символов одного алфавита с помощью кодовых слов в другом алфавите; кодовая таблица, декодирование.
Двоичный алфавит. Представление данных в компьютере как текстов в двоичном алфавите.
Двоичные коды с фиксированной длиной кодового слова. Разрядность кода – длина кодового слова. Примеры двоичных кодов с разрядностью 8, 16, 32.
Единицы измерения длины двоичных текстов: бит, байт, Килобайт и т. д. Количество информации, содержащееся в сообщении.
Подход А.Н.Колмогорова к определению количества информации.
Зависимость количества кодовых комбинаций от разрядности кода. Код ASCII. Кодировки кириллицы. Примеры кодирования букв национальных алфавитов. Представление о стандарте Unicode. Таблицы кодировки с алфавитом, отличным от двоичного.
Искажение информации при передаче. Коды, исправляющие ошибки. Возможность однозначного декодирования для кодов с различной длиной кодовых слов.
Дискретизация
Измерение и дискретизация. Общее представление о цифровом представлении аудиовизуальных и других непрерывных данных.
Кодирование цвета. Цветовые модели
. Модели RGB и CMYK. Модели HSB и CMY. Глубина кодирования. Знакомство с растровой и векторной графикой.
Кодирование звука. Разрядность и частота записи. Количество каналов записи.
Оценка количественных параметров, связанных с представлением и хранением изображений и звуковых файлов.
Системы счисления
Позиционные и непозиционные системы счисления. Примеры представления чисел в позиционных системах счисления.
Основание системы счисления. Алфавит (множество цифр) системы счисления. Количество цифр, используемых в системе счисления с заданным основанием. Краткая и развернутая формы записи чисел в позиционных системах счисления.
Двоичная система счисления, запись целых чисел в пределах от 0 до 1024. Перевод натуральных чисел из десятичной системы счисления в двоичную и из двоичной в десятичную.
Восьмеричная и шестнадцатеричная системы счисления. Перевод натуральных чисел из десятичной системы счисления в восьмеричную, шестнадцатеричную и обратно.
Перевод натуральных чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно.
Арифметические действия в системах счисления.
Элементы комбинаторики, теории множеств и математической логики
Расчет количества вариантов: формулы перемножения и сложения количества вариантов.
Количество текстов данной длины в данном алфавите.
Множество. Определение количества элементов во множествах, полученных из двух или трех базовых множеств с помощью операций объединения, пересечения и дополнения.
Высказывания. Простые и сложные высказывания. Диаграммы Эйлера-Венна. Логические значения высказываний. Логические выражения. Логические операции: «и» (конъюнкция, логическое умножение), «или» (дизъюнкция, логическое сложение), «не» (логическое отрицание). Правила записи логических выражений. Приоритеты логических операций.
Таблицы истинности. Построение таблиц истинности для логических выражений.
Логические операции следования (импликация) и равносильности (эквивалентность). Свойства логических операций. Законы алгебры логики. Использование таблиц истинности для доказательства законов алгебры логики. Логические элементы. Схемы логических элементов и их физическая (электронная) реализация. Знакомство с логическими основами компьютера.